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Abstract

This work introduces a modified WFST-based multiple to
multiple EM-driven alignment algorithm for Grapheme-
to-Phoneme (G2P) conversion, and preliminary experi-
mental results applying a Recurrent Neural Network Lan-
guage Model (RNNLM) as an N-best rescoring mecha-
nism for G2P conversion. The alignment algorithm lever-
ages the WFST framework and introduces several sim-
ple structural constraints which yield a small but consis-
tent improvement in Word Accuracy (WA) on a selec-
tion of standard baselines. The RNNLM rescoring fur-
ther extends these gains and achieves state-of-the-art per-
formance on four standard G2P datasets. The system is
also shown to be significantly faster than existing solu-
tions. Finally, the complete WFST-based G2P framework
is provided as an open-source toolkit.
Index Terms: G2P, Alignment, RNNLM, WFST

1. Introduction
Grapheme-to-Phoneme (G2P) conversion is an impor-
tant topic related to both Automatic Speech Recognition
(ASR) and Text-To-Speech synthesis (TTS), and which
also plays a role in Spoken Dialog Systems (SDS) and
Natural Language Processing (NLP).

The primary goal of G2P conversion is to accurately
predict the pronunciation of a novel word given only the
orthography. For languages like French and English,
designing robust systems has proven to be a surpris-
ingly difficult challenge due inconsistencies and compet-
ing rules.

One of the most popular approaches to this problem
is the joint sequence model [1]. In the simplest case this
amounts to training an N-gram model from an aligned
corpus of G⇔P sequences. Bisani and Ney [1] proposed
a method for joint sequence modeling that utilizes a dis-
counted Expectation Maximization (EM) scheme to si-
multaneously align and segment a pronunciation dictio-
nary into a successful G2P model. This approach cur-
rently represents the gold-standard in joint sequence ap-
proaches to G2P conversion. More recently, Jiampoja-
marn [2] proposed an approach combining a multiple-to-
multiple (M2M) sequence alignment algorithm [3] with

an online discriminative training framework that consis-
tently outperforms the joint sequence model. Many re-
lated methods have been proposed in past, and the reader
is referred to [1] for a comprehensive review.

This work employs a modified, loosely coupled ap-
proach to joint sequence modeling which introduces sev-
eral minor structural improvements to the M2M align-
ment algorithm of [3], and utilizes a standard joint N-
gram model. The Weighted Finite-State Transducer
(WFST) framework is utilized throughout, following the
approach outlined in [4, 5]. An earlier, slightly different
WFST-based approach is described in [6].

This work also investigates N-best rescoring
with a Recurrent Neural Network Language Model
(RNNLM) [7], which achieves a small but consistent
improvement to the state-of-the-art in G2P conversion
across several standard test sets. In addition to the
modest accuracy improvements, the system is shown to
be much more efficient. Finally, the proposed system is
released as an open source software project [8].

The remainder of the paper is structured as follows.
Section 2 describes the alignment sub-problem in detail,
and proposes an improved m-to-one/one-to-m alignment
algorithm leveraging the WFST framework. Section 3
summarizes the joint N-gram modeling approach. Sec-
tion 4 describes the WFST-based G2P decoding frame-
work. Section 5 details the RNNLM based N-best rescor-
ing approach. Section 6 presents experimental results and
related analysis. Section 7 summarizes the results and
discusses future work.

2. Grapheme-to-Phoneme Alignment
Yianolos and Ristad [9] described the theory and imple-
mentation of a one-to-one stochastic transducer which
could be trained to model string edit distance using the
EM framework. Jiampojamarn [3, 2] extended this to
model multiple-to-multiple alignments and close analysis
of their reference implementation [10] indicated several
potential areas for improvement. In the proposed imple-
mentation we cast the problem in the WFST framework
as described in Algorithm 1.

We make three modifications to the initialization
function compared to [3, 2]. ! Only m-to-one and one-



Algorithm 1: Outline of the proposed Multiple-to-
Multiple EM alignment algorithm.

Input: xT , yV , maxX , maxY , delX , delY
Output: γ, AlignedLattices
foreach sequence pair (xT , yV ) do

InitM2MFSA(xT , yV , maxX , maxY ,delX ,
delY )

foreach sequence pair (xT , yV ) do
Exp-M2M(xT , yV , maxX , maxY , γ)

Max-M2M(γ)

to-m arcs are trained, in contrast to [3] where m-to-m arcs
are trained but two-to-two arcs are excluded by default
during decoding, and [2] where only one-to-m arcs are
allowed. The EM-training tends to heavily favor m-to-
m links, however when using 1-best alignments to train
a joint N-gram model, the larger chunks result in lower
precision. In practice the m-to-one, one-to-m constraints
appear to achieve a better balance and result in higher
WA scores, while the smaller number of arcs leads to
shorter training times. " A joint WFSA alignment lattice
is built from each sequence pair using the log semiring,
input/output labels are encoded as joint labels, and any
arcs that are not on a valid path are deleted. The latter
step is important because unless both delX and delY are
true, unconnected arcs may be generated. # All remain-
ing arcs, including deletion/substitution arcs are initial-
ized to and constrained to maintain a non-zero weight.
This helps to ensure that EM training produces valid es-
timates for all possible transitions.

Once the corpus of sequences is transformed into a set
of FSA alignment lattices EM training proceeds straight-
forwardly. No further book-keeping or string manipula-
tion is required, which simplifies and speeds up subse-
quent expectation and maximization steps in comparison
to [10]. The WFST-based Expectation step is described in
Algorithm 2, where the ShortestDistance in the log semir-
ing is equivalent to the forward algorithm. The max-

Algorithm 2: Outline of the proposed WFST-based
Expectation algorithm. Here a.w refers to the “arc
weight”, a.ns refers to the “next state” and a.il
refers to an “input label”.

Input: AlignedLattices
Output: γ, total
foreach FSA alignment lattice F do

α = ShortestDistance(F )
β = ShortestDistance(F ˆR)
foreach State q in F do

foreach Arc a in q do
val = ((α[q]⊗ a.w)⊗ β[a.ns])# β[0]
γ[a.il] = γ[a.il]⊕ val
total = total ⊕ val

imization step is described in Algorithm 3, and simply
renormalizes the result of the E-step.

Algorithm 3: Outline of the proposed WFST-based
Maximization routine.

Input: γ, total
Output: AlignedLattices
foreach Label pair p in γ do

γ new[p.il] = p.w/total γ[p.il] = 0
foreach FSA alignment lattice F do

foreach State q in F do
foreach Arc a in q do

a.w = γ new[a.il]

Once the EM process terminates, the resulting γ table is
applied to the alignment lattices. A shortest path algo-
rithm can then be used to produce the 1-best alignment
for each entry in the training corpus, or the lattices can
be used directly to train a joint N-gram model. Finally a
length-normalization penalty is applied during decoding.
This is defined as the length of the longest subsequence
for a given arc, similar to [10].

3. WFST-based Joint N-gram model
The proposed toolkit [8] utilizes a simple joint N-gram
formulation which is trained on an aligned pronunciation
lexicon following [5]. The training corpus is generated
directly from the shortest path through each joint WFSA
alignment lattice:

<s> a}x b}b a}@ c|k}k </s>
<s> a}x b}b a}@ f}f t}t </s>

and this is used to train a statistical language model in the
standard way. The complete training procedure is out-
lined below.

1. Convert aligned sequence pairs, (g1, g2, ..., gn),
(p1, p2, ..., pn) to sequences of aligned pairs,
(g1:p1, g2:p2, ..., gn:pn).

2. Generate an N-gram model from (1).

3. Convert the N-gram model to a WFST with
grapheme input and phoneme output labels.

4. WFST-based G2P Decoding
Generating a pronunciation for a new word is achieved by
compiling the word into an FSA and composing it with
the pronunciation model. In the case of an m-to-one/one-
to-m model, a list of grapheme subsequences generated
during alignment are utilized to build the input FSA. The
maximum size of the subsequences is determined by the
alignment parameters. An example of such a test FSA for
the word ‘right’, is depicted in Figure 1.

The decoding procedure is defined by a cascade of
WFST operations and a final formatting step described in
Equation 1.

Hlist = ShortestPath(Det(Projo(W ◦M))) (1)



Figure 1: A multiple-to-multiple alignment example. Arc
choices like, i → g → h versus i → gh will be determined
at runtime.

where Hlist refers to the weighted list of pronuncia-
tion hypotheses. W refers to the FSA constructed from
the input test word, and M refers to the WFST con-
structed from the joint G2P N -gram model. The ◦ op-
erator denotes composition, the Projo operator indicates
that the output labels only are projected, thereby creat-
ing an FSA containing just the hypothesized phoneme
sequences. The Det operator refers to an optional deter-
minization step, and ShortestPath denotes the global
shortest path, or N-shortest paths. Here the best hypothe-
sis is just the single shortest path through the composition
result. A major advantage of this decoupled approach is
that each component of the final model can usually be
trained in a matter of minutes.

5. N-best rescoring with RNNLM
Recurrent Neural Network Language Models have re-
cently enjoyed a resurgence in popularity, achieving no-
table improvements in the area of N-best rescoring of
ASR lattices [7]. In [7] the authors make the argu-
ment that the neural network language models have mem-
ory, are able to cluster similar words and histories, and
provide complementary information to standard back-off
models. This work has recently been made available as
an open source toolkit, RNNLM [11]. This suggested that
the approach might also be applicable to our G2P system.

As an additional set of experiments we explored
extending the proposed WFST-based G2P system with
RNNLM-based N-best rescoring. In order to train each
RNNLM the aligned corpus of joint G⇔P sequences was
utilized as input. The RNNLMs required a considerable
amount of parameter tuning and experimentation in or-
der to find the right number of hidden neurons, order and
direct connections. A crude form of interpolation was uti-
lized whereby the optimal N produced by each baseline
model was also tuned prior to the testing phase. RNNLM
rescoring produced consistent improvements to the state-
of-the-art on all evaluated test sets.

6. Experiments and Results
A range of experiments were conducted exploring the
impact of the modified alignment algorithm and the im-
pact of RNNLM-based N-best rescoring. Specifically
the NETtalk-15k, NETTalk-19k, CMUdict and OALD
tests were replicated exactly as in [1, 2]. We investi-
gate the relative performance of the m2m-alignment algo-

rithm from [3], our proposed modifications, and RNNLM
rescoring. For the alignment algorithms, parameters were
set as described in Table 2. For the N-gram models N was

Table 2: Optimal alignment parameters for m2m-aligner
and the proposed aligner.

Aligner maxX maxY delX delY
m2m-aligner 2 2 True False
Proposed 2 2 True True

set to 7 for the NETtalk evaluations and 11 for the larger
CMUdict and OALD evaluations. Kneser-Ney smooth-
ing was used for all N-gram models.

Table 3: Training times for the smallest (15k entries) and
largest (112k entries) training sets.

System NETtalk-15k CMUdict
Sequitur [1] Hours Days
direcTL+ [2] Hours Days
m2m-P 2m56s 21m58s
m2m-fst-P 1m43s 13m06s
rnnlm-P 20m 2h

Parameter tuning for the RNNLMs was somewhat
involved. First each training set was randomly parti-
tioned into a 96.5% training and 3.5% validation set -
this corresponded to roughly 500 entries in the case of the
NETTalk-15k dataset. Parameters for all models were set
as follows. Hidden layers: 300, direct-order: 4, direct-
connections:2M, bptt: 10, bptt-block: 10. Finally the op-
timal N was selected by similarly tuning on a separate
5% held-out test set. For NETTalk N=10, CMUdict N=3
and for OALD N=5. This parameter can be thought of as
a crude interpolation weight. WA results for the RNNLM
rescoring were computed by averaging over 5 separate
randomized trials.

Results for the four different test sets including pre-
vious reported results from [1, 2], and three variations
of the proposed setup are described in Table 1. WA
scores are computed as C/N where C represents the to-
tal number of correct hypotheses and N the number of
unique words in the test set. Test words with more than
one pronunciation variant were counted only once, and
counted correct if the G2P hypothesis matched one of
the variants. The improvements to the alignment algo-
rithm clearly yield a small but consistent increase ver-
sus [3]. This may be attributed to ! elimination of m-
to-m arcs during training, whereas in [10] m-to-m arcs
are trained but ignored during decoding and " the con-
straint enforcing non-zero weights for deletion arcs. For
the NETTalk experiments the improved alignment algo-
rithm alone is enough to produce consistent improve-
ments over [1]. Adding the RNNLM rescoring further



Table 1: Word Accuracy (WA) results on four standard test sets for previous systems, and variations of the proposed
system [8]. Here m2m-P refers to [8] utilizing m2m-aligner, m2m-fst-P refers to [8] using the proposed FST alignment
algorithm, and rnnlm-P includes the application of RNNLM-based n-best rescoring.

System NETtalk-15k NETtalk-19k CMUdict OALD
Sequitur [1] 66.20 69.00 75.47 82.51
direcTL+ [2] ∼ 71.10 75.52 83.32
m2m-P 66.39 68.90 75.08 81.20
m2m-fst-P 66.50 69.50 75.25 81.86
rnnlm-P 67.77 71.14 75.56 83.52

produces improvements to the state-of-the-art in all eval-
uations.

One of the major advantages of the proposed system
is its speed. Table 3 compares total training times for the
various systems. The proposed alignment algorithm is
typically 40% faster than m2m-aligner even though more
complex parameters are being utilized. For comparison
both the DirecTL+ and SequiturG2P approaches require
anywhere from hours to days to train models of similar
quality [1, 2]. The complementary RNNLM models typ-
ically required 20 minutes to 2 hours to train.

7. Conclusions and Future Work

This work presented a novel, modified WFST-based m-
to-one/one-to-m alignment algorithm which achieves a
small but consistent improvement over previous propos-
als through the use of simple constraints. It also ex-
plored the application of RNNLM-based N-best rescor-
ing to G2P conversion, and introduced a new open source
WFST-based G2P conversion framework [8] which is ex-
tremely fast and, when combined with rescoring, con-
sistently improved state-of-the-art G2P performance on
a range of standard test sets.

We note that the proposed alignment algorithm may
be applicable to DirecTL+, and that RNNLM rescoring
should be applicable to both DirecTL+ and SequiturG2P,
although at the expense of increased training time and
complexity. In future we plan to give a more detailed
analysis of the improved alignment algorithm, and inves-
tigate a more general regularized or penalized EM ap-
proach. We also plan to extend the G2P framework to
train N-gram models directly from the alignment lattices
rather than just the one-best alignments. Finally mini-
mum bayes risk decoding has proven effective for ma-
chine translation applications and we plan to extend the
current framework to support this. On the RNNLM side
we plan to implement a more integrated interpolation so-
lution to replace the current N-best approach, simplify to
eliminate tuning requirements, and integrate the solution
into the existing open source project.
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