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Abstract
This paper introduces the Transducersaurus toolkit which pro-
vides a set of classes for generating each of the fundamen-
tal components of a typical WFST ASR cascade, including a
Context-dependency transducer, a Lexicon, a stochastic lan-
guage model and an optional silence class model. The toolkit
further implements a simple scripting language in order to fa-
cilitate the construction of cascades with a variety of popular
combination and optimization methods and provides integrated
support for the T3 and Juicer WFST decoders, and both Sphinx
and HTK format acoustic models. New results for two standard
WSJ tasks are also provided, comparing a variety of cascade
construction and optimization algorithms. These results illus-
trate the flexibility of the toolkit as well as the tradeoffs inherent
in various build algorithms.
Index Terms: Speech Recognition, WFST, LVCSR

1. Introduction
In recent years the Weighted Finite-State Transducer (WFST)
paradigm [1] has gained considerable popularity as a plat-
form for Automatic Speech Recognition (ASR). The WFST ap-
proach provides an elegant, unified mathematical framework
that can be utilized to train, generate, combine and optimize
the many heterogenous knowledge sources that typically make
up a modern Large Vocabulary Continuous Speech Recognition
(LVCSR) system. This has lead to the development of several
excellent general software libraries devoted to the construction
and manipulation of WFSTs including the popular open source
OpenFst [2] toolkit. Much research has also been conducted
on the theoretical construction, integration and optimization of
WFST models for ASR [3]. Nevertheless to our knowledge at
present there is no open source toolkit devoted to the construc-
tion of ASR-specific WFST models.

This lack of available tools represents a serious obstacle
to the wider dissemination of WFST-based methods. The cur-
rent work introduces the Transducersaurus WFST toolkit [4],
which aims to provide a unified, flexible and transparent ap-
proach to the construction of integrated WFST-based ASR cas-
cades, while incorporating recent research results on this im-
portant topic. It includes a set of classes for constructing com-
ponent models as well as a simple Domain Specific Language
(DSL) suitable for specifying cascade integration and optimiza-
tion commands. It provides integrated support for HTK and
Sphinx acoustic models and cascade construction support for
both the T3 [5] and Juicer [6] WFST decoders. Where in past
complicated development was required, with this toolkit in-
put knowledge sources and a single command are sufficient to
build a high-performance system.In addition to introducing the
toolkit, this work contributes new experimental results for two
LVCSR tasks from the Wall Street Journal [7] (WSJ) corpus,
and provides discussion of alternative cascade build chains.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the main component models of a typical WFST-
based ASR cascade. Section 3 describes the cascade integration
tool and its capabilities. Section 4 describes new experimen-
tal results that explore the flexibility of the Transducersaurus
toolkit. Section 5 provides additional analysis and explores the
practical implications of various construction techniques. Fi-
nally, Section 6 concludes the paper.

2. Cascade components
A typical WFST-based ASR cascade constitutes the integrated
product of multiple component models. The most straightfor-
ward and perhaps common construction involves three com-
ponent models. The Grammar - G, typically takes the form
of a statistical language model. The Lexicon - L, encodes a
pronunciation dictionary which maps monophone sequences to
words. The Context-dependency transducer - C, maps triphone
sequences to monophones, thus encoding contextual informa-
tion for longer sequences of monophones or words. Each of
these core component transducers is supported by the Trans-
ducersaurus toolkit. The toolkit also includes an optional class
suitable for constructing a silence class model - T as described
in [3]. In addition to the C, L, G, and T models, an H model
which performs a mapping from HMM distributions to triphone
sequences is often described in the literature. Support for the H
model has been omitted at this point, but may be included in
future releases. The remainder of this section briefly describes
each of these components.

2.1. Grammar

The grammar, G typically represents a statistical language
model and encodes it as a Weighted Finite-State Acceptor
(WFSA). The literature, particuarly [9] discusses several differ-
ent approaches to the construction or transformation of a stan-
dard N -gram model to WFSA format. The simplest approach
utilizes standard ε-transitions to represent back-off arcs and a
history-less back-off state; a small example is depicted in Fig-
ure 1. This approach has the minor drawback that in some cases
back-off arcs are less costly than normal N -gram arcs, result-
ing in sub-optimal path choices. This can be avoided by utiliz-
ing failure or φ-transitions for the back-off arcs, which explic-
itly encode the idea that a back-off arc should only be utilized
where a normal N -gram alternative does not exist. Yet another
alternative involves generating additional back-off states, mu-
tating the original input model so as to eliminate competition
between normal N -grams and back-off arcs. The Transduc-
ersaurus toolkit currently implements the standard ε-transition
back-off strategy by default. This choice reflects the relative
simplicity of the algorithm, conciseness of the result and the
fairly limited impact that this choice has on ASR accuracy. Sup-
port for alternative constructions is under way.
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Figure 1: Detail of a bi-gram model for a simple two word LM.

Figure 2: Detail of a 2-phone Context-dependency WFST C.
Explicit auxiliary self-loops have been omitted.

2.2. Lexicon

The lexicon transducer, L provides a mapping from monophone
sequences to words. The construction of the L transducer is
straightforward however, as described in [3] there is one caveat.
The introduction of homophones, entries which share the same
pronunciation but differ in terms of their surface form or orthog-
raphy, will have the undesirable effect of making the lexicon or
resulting cascade non-determinizable. This can be avoided by
augmenting the phoneme set with auxiliary symbols that are
mapped down through the cascade. The lexicon class handles
this automatically.

2.3. Context-dependency

The Context-dependency transducer, C provides a mapping
from triphone sequences to monophone sequences. The con-
struction algorithm is essentially a simple thrice nested for-loop
which constructs all possible logical triphone sequences from a
list of input monophones. Again [3] introduces two fundamen-
tally different approaches to constructing the C transducer. The
first results in a non-deterministic, non-delayed C, while the
second results in a deterministic but delayed C. The toolkit fo-
cuses on the deterministic construction as this is preferable for
the construction and optimization of integrated ASR cascades.
Figure 2 shows a detail of a simple 2-phone context-dependency
transducer using the deterministic construction algorithm. The
project also supports the inclusion of auxiliary symbols in the
form of simple self-loops, in order to handle the homophony
issue described above.

HTK and Sphinx format acoustic models differ in terms
of formatting, and Sphinx models default to the use of posi-
tional triphones. These differences necessitate slightly different
approaches to the construction strategies for the C transducer.
Thus the project includes separate classes for constructing the
HTK versus Sphinx based C models, which provide integrated
support for the HTK hmmdefs and tiedlist files and the Sphinx
mdef files respectively.

2.4. Silence class

The silence class transducer, T transforms a grammar by graft-
ing optional silence transitions onto existing word sequences.
Other approaches to silence modeling for WFSTs include aug-
menting the lexicon with silence tokens, or utilizing a force-
aligned language model with integrated silence or short pause
information. These alternatives are implicitly supported by the
defaut L and G models. estimated from several hundred hours
of force-aligned data from the Fisher corpus [8].

3. Cascade integration
Before the component WFST models can be used for recog-
nition inside of a WFST decoder, it is first necessary to inte-
grate them into some form of cascade. The Transducersaurus
tookit provides such an integration tool in the form of trans-
ducersaurus.py, which calls the model construction classes de-
scribed in Section 2, and performs integration, optimization and
conversion of the ASR cascade automatically. The tool utilizes
the OpenFst toolkit for all compilation, composition and opti-
mization procedures. The tool provides a wide range of features
which allows the user to specify information such as the desired
semiring [11], the set and order of combination and optimiza-
tion operations, the acoustic model type and the preferred de-
coder just to name a few. There are many different approaches
to combining and optimizing WFST cascades, as can be appre-
ciated from the literature on the subject, and the diversity of the
construction procedures described in the previous sections. The
approaches described in the literature typically advocate,

π(min(det(C ◦ det(L ◦G)))) (1)

where π refers to auxiliary symbol removal, min refers to
weighted minimization, det refers to weighted determinization,
and ◦ refers to standard composition. This may be further aug-
mented by weight-pushing. Alternatively, the simpler and less
memory intensive,

C ◦ det(L ◦G) (2)
has also been shown [10] to produce good results. Furthermore
the log semiring is typically recommended as it helps preserve
any stochastic properties of the input. Nevertheless, it can be
time consuming to produce alternative build constructions, yet
the process of experimentation and exploration is essential to
developing a strong understanding regarding the effects of these
procedures on Word Accuracy (WACC) and Real-Time Factor
(RTF). Thus the flagship contribution of this toolkit is a simple
WFST-oriented DSL which aims to streamline the specification
of build algorithms.

3.1. Cascade construction DSL

The DSL supported by the build tool allows the user to specify
a build chain using a subset of the standard FST-based com-
bination and optimization algorithms, as well as shorthand for
the component models described earlier. The user specifies a
simple chain for example,

--command "min(det(C*det(L*(G*T))))",
--command "(C*det(L)).(G*T)"

and the build tool will automatically tokenize and parse the
command into the appropriate series of OpenFst commands,
generating intermediate results as necessary along the way. At
present the DSL is quite limited, but supports the min, det, ◦
(specified “∗” on the command line) and “.” operations as well
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as the construction of the C, L, G, and T component transduc-
ers. The “.” operation refers to static Look-Ahead (SLA) com-
position, which was released in a recent version of OpenFst,
and which implements the Look-Ahead composition algorithm
proposed in [12]. Auxiliary symbol replacement is handled au-
tomatically in a manner dependent on the set of build commands
issued by the user.

The advantage of the DSL approach is that it permits very
simple specification of the build chain, which in turn encour-
ages experimentation and hopefully learning, and lends itself
easily to further extension through the future addition of other
standard operations. Thus the user only needs to prepare the
component knowledge sources, and specify a build algorithm.
For example the command,

./transducersaurus.py --tiedlist tiedlist
--hmmdefs hmmdefs --grammar my.lm
--lexicon my.lex --amtype htk
--command "(C*det(L)).(G*T)" --convert tj

would automatically construct a cascade utilizing a silence class
model, SLA composition and an HTK acoustic model and out-
put cascades suitable for use in both Juicer and T3.

4. Experiments
In order to showcase the versatility of the proposed toolkit, we
conducted a variety of experiments using standard WSJ test and
training sets, and a wide selection of different build chains. Be-
low we report several results for both the Juicer and T3 WFST
decoders and HTK and Sphinx based acoustic models.

4.1. Experimental setup

All experiments for this work were performed on an 8 core In-
tel Xeon based machine running at 3GHz with a 6MB cache
and 64GBs of main system memory and using the RHEL op-
erating system. As with our previous results from [10], the
experiments covered two popular tasks from the WSJ corpus.
The first task, nov92-5k, focuses on the November 1992 ARPA
WSJ test set which comprises 330 sentences, and was evalu-
ated using the WSJ 5k non-verbalized vocabulary and the stan-
dard WSJ 5k closed bigram language model. The second task,
si dt s2-20k, focuses on a subset of the WSJ1 Hub2 test set
which comprises 207 sentences. The si dt s2-20k task, which is
somewhat more difficult, was evaluated with the standard WSJ
20k non-verbalized closed bigram language model and corre-
sponding vocabulary. In order to help ensure the repeatability of
our experiments, open source AMs described in [13] were used
throughout, and auxiliary parameter values for the T3 and Juicer
decoders were specified as in [10]. Unless otherwise specified
the log semiring was used for all constructions.

4.2. Basic build chains

The first set of experiments looked at the impact of different op-
timization chains on the small bigram nov95-5k task. Three dif-
ferent cascade generation commands were fielded to the build
tool, C ◦ det(L ◦ (G ◦ T )), det(C ◦ det(L ◦ (G ◦ T ))), and
min(det(C ◦ det(L ◦ (G ◦ T )))) to construct integrated cas-
cades for the nov92-5k task. The RTF vs. WACC results of the
experiments using HTK models and the T3 WFST decoder are
shown in Figure 3.
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Figure 3: Cascade build comparison for the nov92-5k task using
the T3 decoder, HTK AM and various optimization techniques.
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Figure 4: SLA cascade build comparison for the si dt s2-20k
task using the T3 decoder and HTK AM.

4.3. Standard composition versus SLA composition

The build tool allows the user to select either standard composi-
tion or SLA composition for each of the composition operations
by simply specifying the “∗” or “.” operator respectively. As
such this made it simple to evaluate the effectiveness of the SLA
approach versus the standard composition approach. RTF vs.
WACC results for these approaches for the si dt s2-20k task are
depicted in Figure 4. The SLA cascade construction from [12]
purports two major advantages over the standard approach, even
in the case where composition is not performed during decod-
ing. The first is that the composition operation is both faster and
more efficient in terms of memory consumption. The second is
that, in the case where the full cascade is not optimized, omit-
ting the det(L ◦ G) operation, affords a substantial reduction
in maximum memory requirements. Furthermore, if the de-
coder supports fast On-the-Fly composition, the precomputed
(C ◦ det(L)) and (G ◦ T ) components may be used directly.

4.4. T3, Juicer, HTK and Sphinx

A major feature of the toolkit is the ability to automatically gen-
erate cascades for HTK or Sphinx models and for either the
T3 or Juicer WFST decoders. In order to illustrate this added
flexibility and further show the relatively equal performance of
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Figure 5: Cascade build comparison for the si dt s2-20k task
using the T3 and Juicer decoders and both HTK and Sphinx
AMs using SLA composition.

these combinations an additional cross-comparison experiment
was performed utilizing the si dt s2-20k task. The results of this
experiment are displayed in Figure 5.

5. Discussion
Overall the results serve to confirm the integrity of the toolkit,
backup past experience and replicate results from recent work.
The results described in 4.2 show little tangible difference
among the different optimization procedures. This was also re-
flected in the size of the cascades, which were nearly identical
in all three cases. This is most likely a consequence of the small
size and simplicity of the nov92-5k training data, however we
plan to explore this further in future. Larger and more complex
inputs tend to benefit more from final optimization procedures.
Nevertheless the most substantial relative improvements result
from the initial determinization procedure.

The SLA experiments from 4.3 further confirm the supe-
riority of the look-ahead composition algorithm, even where
static cascades are concerned. The composition algorithm it-
self is an improvement over standard composition, but the most
substantial gains result from the ability to avoid the otherwise
costly det(L ◦ G) operation. In the above experiments as well
as additional results for larger cascades which are not reported
in this paper, the SLA approach resulted in an average memory
savings of roughly 50%, and an average overall time savings
of nearly 80%. The SLA build also benefited from use of the
tropical semiring. This is due to the fact that determinization
of the un-weighted (and thus non-stochastic) L transducer in
the log semiring produces an undesirable re-weighting which
negatively affects the final cascade. This issue can be avoided
either by performing the entire build in the tropical semiring or
performing just the det(L) operation in the tropical semiring.

The cross-comparison results described in 4.4 serve to
replicate our results from [10], albeit using the SLA build. The
small performance variation among the AM types and T3 ver-
sus Juicer again suggest that there is not much technical moti-
vation to overtly favor any particular combination. Rather the
availability of resources and existing expertise should guide de-
velopment choices.

Finally, although T3 supports GPU-based computation of
acoustic likelihood scores, we have omitted these results here
because the GPU acceleration, combined with the more accu-
rate logsum operation tends to overshadow most cascade opti-

mization effects.

6. Conclusion and Future Work
In this work we introduced Transducersaurus, a new open
source software toolkit for building and manipulating WFST-
based ASR cascades which provides integrated support for the
T3 and Juicer WFST decoders and both HTK and Sphinx acous-
tic models. We have shown the effectiveness of the toolkit for
a variety of standard tasks, and furthermore provided a detailed
explanation of the SLA build process and its merits and caveats.
The ASR application development process is often iterative, and
these results suggest that by utilizing a simplified build chain
and the SLA composition approach overall efficiency can be
greatly improved.

In future we plan to further expand the range of available
operations, expand the current DSL build syntax, provide in-
tegrated OOV support and introduce parallel support for the
AT&T fsmtools. Experimental results for a wider variety of lan-
guages and model inputs are also underway. We hope that this
toolkit will facilitate learning as well as more efficient work in
this area, and promote further discussion.
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