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Abstract
Automatic pronunciation assessment has several difficulties.
Adequacy in controlling the vocal organs is often estimated
from the spectral envelopes of input utterances but the envelope
patterns are also affected by other factors such as speaker iden-
tity. Recently, a new method of speech representation was pro-
posed where these non-linguistic variations are effectively re-
moved through modeling only the contrastive aspects of speech
features. This speech representation is called speech struc-
ture. However, the often excessively high dimensionality of
the speech structure can degrade the performance of structure-
based pronunciation assessment. To deal with this problem, we
integrate multilayer regression analysis with the structure-based
assessment. The results show higher correlation between hu-
man and machine scores and also show much higher robustness
to speaker differences compared to widely used GOP-based
analysis.
Index Terms: CALL, speech structure, regression, GOP

1. Introduction
Automatic pronunciation assessment is a task used to evalu-
ate only the linguistic aspect of utterances. However, speech
features inevitably include acoustic variations caused by non-
linguistic factors such as the speaker, communication chan-
nel and noise. The same pronunciation can lead to different
acoustic observations due to different speakers and different
environments. To deal with these variations, modern pronun-
ciation assessment approaches mainly make use of statistical
methods to model the distributions of the acoustic features [1].
These methods can achieve relatively high performance when
there is a good match between training and testing conditions.
But their performance always degrades significantly when these
conditions are mismatched. In Automatic Speech Recogni-
tion (ASR), speaker adaptation techniques have proved effec-
tive at reducing mismatches. However, if the acoustic models
used in pronunciation assessment are adapted to learners, in-
correct pronunciations might be recognized as correct due to
over-adaptation [2].

To solve the mismatch problem, the third author of this
paper proposed a new speech representation, called speech
structure, which aims at removing the non-linguistic factors
in speech features [3]. In contrast to classical speech models,
speech structures make use of f -divergence to model only the
contrastive aspects of speech and discard the absolute features
completely. This novel approach has been applied to pronunci-
ation assessment [4, 5], ASR [6], dialect-based speaker classifi-
cation [7], and speech synthesis [8].

However, the often excessively high dimensionality in
speech structures can degrade the performance of structure-
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Figure 1: Transform-invariant speech structures

based pronunciation assessment. In order to solve this prob-
lem, in this paper, we integrate multilayer regression analysis
with the structure-based assessment. Through this integration,
we can reduce the dimensionality and thereby make it possible
to estimate pronunciation proficiency more accurately. We also
propose an appropriate combination of structure-based multi-
layer regression analysis and the widely used Goodness Of Pro-
nunciation (GOP) based analysis [1]. The results show that the
proposed methods achieve higher performance than our previ-
ous structure-based method and the GOP-based method.

2. Speech structure
2.1. Theory of invariant speech structure

Two speakers have different vocal tract lengths and shapes. In
studies of voice conversion, speaker difference is often modeled
mathematically as a linear or non-linear transformation of the
cepstrum. Especially, vocal tract length difference can be mod-
eled well by monotonic frequency warping in the spectral do-
main, which can be converted into a linear transformation in the
cepstrum domain [9]. These facts indicate that some transform-
invariant features can be robust features.

Consider a feature space X and a pattern P in X . Sup-
pose P can be decomposed into M events {pi}M

i=1. Each event
is described as a distribution pi(x) in the feature space. Assume
there is an invertible transformation f : X→Y (linear or non-
linear) which transforms X into a new feature space Y . In this
way, pattern P in X is mapped to pattern Q in Y , and event
pi is transformed to event qi. Thus what we want is invariant
metrics in both space X and space Y .

The second author of this paper proved that f -divergence
between two distributions are invariant with any kind of in-
vertible and differentiable transform [10]. Fig. 1 shows two in-
variant speech structures made by only f -divergences in both
spaces. f -divergence is a family of divergence measures de-
fined as

fdiv (p1, p2) =

I

p2(x)g

„

p1(x)

p2(x)

«

dx, (1)
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Figure 2: Structure-based pronunciation assessment

where g : (0,∞) → R is a real convex function and g(1)
= 0. Many well known distances and divergences in statis-
tics and information theory can be seen as special examples
of f -divergences . For example, when

√
t is used for g(t),

− ln(fdiv) becomes the Bhattacharyya distance (BD),

BD(p1, p2) = − ln

I

p

p1(x)p2(x)dx. (2)

We use
√

BD to form the speech structures in this paper.

2.2. Structure-based pronunciation assessment

Fig. 2 shows a diagram of our previous structure-based pronun-
ciation assessment. A student’s structure S and a teacher’s
structure T are extracted from their respective utterances. A
structure is represented as a distance matrix and the structural
difference between two structures is calculated as

D(S, T ) =

v

u

u

t

1

M

X

i<j

„

Sij − Tij

Sij + Tij

«2

, (3)

where S and T are two distance matrices whose elements
are calculated as

√
BD [5]. M is the number of distribu-

tions, which typically indicate phonemes. From these two
distance matrices, we derive a difference matrix whose ele-
ment Dij is ((Sij − Tij)/(Sij + Tij))

2, shown in Fig. 2 In
[5], through structural comparison between each student in a
Japanese-English database and a specific teacher, a proficiency
score of that student was automatically estimated. The obtained
score was compared to the proficiency scores provided by the
database and a high correlation was found. In [4], D is decom-
posed into a phoneme-specific score Da,

Da(S, T ) =

v

u

u

t

1

M

X

i

„

Sai − Tai

Sai + Tai

«2

. (4)

Da was used to generate diagnostic instructions for phoneme a.

3. Multilayer regression analysis
3.1. Two-layered regression analyis

Generally speaking, a speech structure has high dimensional-
ity. Let M denote the number of distributions of it. Then the
number of parameters is M(M−1)/2. The high dimensionality
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Figure 4: Three-layered regression analysis

not only increases the computational cost but also degrades the
performance. In structure-based ASR studies, PCA and LDA
were examined, and dimension reduction proved effective at
improving the performance. To build a pronunciation learning
system, however, diagnostic instructions often have to be gen-
erated automatically. Considering this function, dimensionality
reduction using PCA or LDA is not appropriate for the system
because the reduced parameters are difficult to analyze.

To deal with this problem, we integrate two-layered regres-
sion analysis with structure-based pronunciation assessment.
Fig. 3 shows a diagram of two-layered regression analysis. The
first layer regression analysis is done using each row vector
of the difference matrix as independent variable and teacher’s
score for each phoneme as dependent variable. The estimated
weight vector wi gives us the information on which contrast to
phoneme i is more important to evaluate phoneme i. The re-
sults of the regression are estimated proficiency scores for the
phonemes. Then, the second layer regression analysis is done
using these scores as independent variables and teacher’s over-
all proficiency as a dependent variable. The estimated weight
vector wall shows on which phonemes more focus should be
put. The results of the regression can be used as a proficiency
score for the student. This two-layered regression analysis re-
duces dimensionality like PCA or LDA, but unlike these, it can
estimate a score for each phoneme at intermediate stages. Those
scores can be used for diagnostic instructions although instruc-
tion generation is not dealt with in this paper.

3.2. Three-layered regression analysis

We can obtain more than one difference matrix using more than
one teacher. Multiple difference matrices have more informa-
tion than a single difference matrix, but the dimensionality of
n difference matrices is higher than that of a single difference
matrix.

We extend two-layered regression analysis to three-layered
regression analysis for n difference matrices. Fig. 4 shows a
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Figure 5: Three-layered regression analysis with GOP scores

diagram of three-layered regression analysis. The first layer re-
gression and the third layer regression is almost the same as the
first layer regression and the second layer regression for two-
layered regression analysis, respectively. At the second layer
regression in Fig. 4, the results of the first layer regression of
each phoneme are used as independent variables. The estimated
weight vector wi2 tells us which difference matrix is more im-
portant.

3.3. Multilayer regression analysis combined with GOP

The speech structure uses the contrastive aspect of speech and
discards the absolute features. In contrast, GOP mainly focuses
on the absolute aspects of speech. A GOP score of phoneme pi

is posterior probability of the phonemes given input utterances
approximately calculated as follows.

GOP (O, pi) ≈ log



P (opi |pi)

maxq∈Q P (opi |q)

ff

, (5)

where opi is the speech segment obtained for pi through forced
alignment. Q is the inventory of phonemes.

The speech structure and the GOP capture different aspects
of speech, so a combination of them might be useful. For exam-
ple, speech structures are useful for vowels because the acous-
tic features of vowels are strongly influenced by speaker differ-
ence. In contrast, GOP scores are expected to be effective for
unvoiced consonants because the features of unvoiced conso-
nants are much less influenced[11].

We propose a method to appropriately combine them. Fig. 5
shows a diagram of three-layered regression analysis combined
with GOP scores. The GOP score is combined with the results
of the first layer regression. At the second layer regression,
the n results of the first layer regression and the GOP score
of each phoneme are used as independent variables. The esti-
mated weight vector wi2 reflects the importance of each of the
n matrices and the GOP score to evaluate phoneme i.

4. Experiments
4.1. The database used in the experiments

The English Read by Japanese (ERJ) database was used in our
experiments, which contains 8 sets of read sentences [12]. Each
set is composed of about 60 sentences, read by 25 university
students, among whom about half are male. Those sentences are
a part of the sentences used in the TIMIT database. Proficiency
scores are also provided for all the 8 × 25 = 200 students,
which were rated by five native teachers of American English
with good knowledge of phonetics and Japanese English. In the
database, the utterances of the same sentences read by 20 native
speakers of General American are also included. 18 of them
read only half of the sentences and the remaining two (M08,
F12) read all the sentences.

Table 1: Conditions for the acoustic analysis
sampling 16bit / 16kHz
windows 25ms length and 10ms shift
parameters MFCC (12dim.)
HMMs speaker-dependent, context-independent, and

1-mixture monophones with diagonal matrix
topology 5 states and 3 distributions per HMM
monophones aa, ae, ah, ao, aw, ax, axr, ay, b, ch, d, dh, eh,

er, ey, f, g, hh, ih, iy, jh, j, k, l, m, n, ng, ow,
oy, p, r, s, sh, t, th, uh, u, w, v, w, y, z, zh, sil

4.2. Structure-based analysis and GOP-based analysis

Table 1 shows the acoustic analysis conditions. From the
database, 200 sets of speaker-dependent monophone HMMs
were trained. From the two teachers who read all the sentences,
8 sets of HMMs were trained, each corresponding to a sentence
set in the database. From the HMMs of a speaker, a speech
structure was calculated. A distance between phonemes was
obtained as the average over three

√
BD values between the

corresponding states. Eventually, 216 distance matrices were
formed in total. In two-layered regression analysis, only M08
was used as a common reference teacher for all the 200 stu-
dents. In three-layered regression analysis, M08 and F12 were
used. In addition, another structure using different features was
prepared. Low-pass filtered speech data were used to calcu-
late the structure. This is because [13] showed that the upper
bands of the spectrum of vowels carry a large portion of speaker
identity, which is irrelevant to pronunciation assessment. Thus
2 × 2 = 4 difference matrices were used for three-layered re-
gression analysis. Using the students’ 8× 25 distance matrices,
we did 8-fold cross-validation. We used ridge regression to es-
timate the weight vectors. In Fig. 3, Fig. 4 and Fig. 5, phoneme-
specific scores were used as dependent variables. In this paper,
however, since phoneme-level scores were not provided in the
database, we used speaker-level scores commonly for any layer.
Using the obtained optimal weights, each student’s structure of
the open set was compared to the teacher’s structure of that set.
Then, the correlation between human and machine scores was
calculated.

To calculate the GOP score, we prepared speaker-
independent and 4-mixture monophone HMMs trained with all
the utterances of the 20 native speakers in the database. Using
60 sentences from each student, we adapted the HMMs with
Maximum Likelihood Linear Regression (MLLR).

We examine three proposed methods: two-layered regres-
sion, three-layered regression, and three-layered regression
with GOP. For comparison, a sub-structure-based method [5]
and two GOP-based methods are tested, i.e., GOP with and
without MLLR adaptation. Both in the GOP-based methods,
regression analysis is also performed.

4.3. Results of pronunciation assessment experiments

Fig. 6 shows that averages and standard variations of corre-
lation coefficients between the human and machine scores.
The average correlation over all the teacher pairs is also plot-
ted as reference. As one can see, the multilayer regression
method achieves a higher correlation than our previous sub-
structure-based method [5], and three-layered regression with
GOP scores achieves the highest correlation (0.75) which is al-
most equal to the average correlation over teacher pairs (0.77).

Next, we examine the robustness of the speech structure
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Figure 6: Averages and standard deviations of correlation coef-
ficients between human and machine scores
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Figure 7: Averages of correlation coefficients between human
and machine scores with warped utterances

with respect to the variation in vocal tract length (VTL). Dif-
ferences in VTL are a major cause of non-linguistic variations,
and this difference can be modeled by warping the frequency
axis of the power spectrum. Let ω denote angular frequency
of a base speaker and ω̂ angular frequency of another (warped)
speaker (0 < ω, ω̂ ≤ π). One popular warping function has the
following form,

ejω̂ =
ejω − α

1 − ejωα
, (6)

where α represents a warping parameter (−1 < α < 1). With
negative/positive values of α, the VTL is lengthened/shortened.
α = −0.4/ + 0.4 approximately doubles/halves the VTL. As
it is difficult to collect speech samples with large VTL varia-
tions in practice, we artificially generate utterances with various
VTLs by applying the above warping function on each utterance
in the database using the STRAIGHT morphing technique [14].

The results are shown in Fig. 7. As one can see, three-
layered regression with GOP scores obtains the highest corre-
lation for every α. When |α| is large, the correlations of GOP

without adaptation drop significantly. The correlations of GOP
with adaptation are higher than those of GOP without adapta-
tion, but drop slightly with larger |α|. On the other hand, the
structure-based methods show high and constant correlations
even when |α| is large, and that without adaptation. Especially,
the two-layered regression uses only a single teacher’s structure
for all the cases of α. This indicates that the speech structure is
much more robust to changes in VTL.

5. Conclusions
This paper integrated multilayer regression analysis with
the structure-based pronunciation assessment technique and
proposed an appropriate combination of the structure-based
method and the GOP-based method. The experimental results
showed that our proposed methods achieved a high correlation
coefficient (0.75) on the ERJ database, which is higher than the
results of our previous structure-based method and the GOP-
based method. The results also showed much higher robustness
of the proposed method to changes in VTL compared with the
GOP-based method.
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