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ABSTRACT

Voice conversion can be reduced to a problem to find a transforma-
tion function between the corresponding speech sequences of two
speakers. Perhaps the most voice conversions methods are GMM-
based statistical mapping methods [1, 2]. However, the classical
GMM-based mapping is frame-to-frame, and cannot take account
of the contextual information existing over a speech sequence. It is
well known that HMM yields an efficient method to model the den-
sity of a whole speech sequence and has found great successes in
speech recognition and synthesis. Inspired by this fact, this paper
studies how to use HMM for voice conversion. We derive an HMM-
based sequence-to-frame mapping function with statistical analy-
sis. Different from previous HMM-based voice conversion methods
[3, 4, 5] that used forced alignment for segmentation and transform
frames aligned to a state with its associated linear transformation,
our method has a soft mapping function as a weighted summation
of linear transformations. The weights are calculated as the HMM
posterior probabilities of frames. We also propose and compare two
methods to learn the parameters of our mapping functions, namely
least square error estimation and maximum likelihood estimation.
We carried out experiments to examine the proposed HMM-based
method for voice conversion.

Index Terms: Voice conversion, sequence-to-frame mapping,
HMM, speech synthesis

1. INTRODUCTION

Voice conversion (VC) aims at transforming a speaker’s voice to
make it sound like another speaker’s without changing the linguis-
tic contents. VC has many important applications in practice, and is
receiving more and more attentions nowadays. Since utterances of
two speakers differ from each other in many aspects, such as speech
rate, duration, pitch, formant frequencies and speaking style etc., an
ideal VC technique should take account of all these aspects. How-
ever, this is difficult in practice, some of these features are difficult
to calculate and some are difficult to convert. For this reason, many
VC techniques focus on the transformation of spectral features, and
only conduct simple modifications for prosody features such as f0.

The GMM-based statistical mapping technique proposed by
Stylianou et al. [1] has been widely used to convert spectral features
between different speakers. These techniques make use of GMM
to model the densities of source cepstral vectors [1] or joint cep-
stral vectors [6]. The mapping function is a weighted summation
of linear transformations for each Gaussian component while the
weights are calculated as posterior probabilities of source vectors.
The parameters of the linear transformations are estimated by mini-
mizing squared errors. The efficiency of GMM-based mapping and
its advantage to other spectral conversion methods such as mapping
codebooks and artificial neural network, have been demonstrated in

many previous studies [1, 6, 2, 7]. However, GMM only describes
the density of frame vectors and cannot take account of the con-
textual (dynamic) information. Although one can incorporate delta
or delta-delta features into GMM, these features still only provide
local dynamic information. On the other hand, HMM is a density
model for sequences and the transition probabilities of HMM allow
it to take account of the dynamics in speech. This paper studies an
HMM-based mapping method for voice conversion. We deduce the
formulas for sequence-to-frame mapping based on HMM by using
statistical analysis. We use least square error (LSE) and maximum
likelihood (ML) criteria to estimate the parameters of the mapping
function. We find that the LSE estimation has a closed form so-
lution, while the ML estimation leads to a nonlinear optimization
problem. For this reason, we develop an EM-based algorithm for the
ML estimation of HMM-based mapping. We conduct experiments
to examine the performances of LSE estimation and ML estimation
for HMM-based voice conversion. The results show the usefulness
of the proposed method.

HMM has been applied to voice conversion in previous studies
[3, 4, 5]. Kim et al. [3] introduced a hidden Markov VQ model
for voice conversion, where the mapping function is determined by
the codebook and the optimal states of a source utterance. Different
from this method, we use normal HMM and our mapping function is
a weighted summation of several linear transformations. Duxans et
al. [4] used HMM to model the densities of source vectors and joint
vectors, and estimated a linear transformation for each state of HMM
to convert an input utterance. In [5], Wu et al. proposed duration-
embedded DeBi-HMM for expressive voice conversion. Unlike the
methods in [4] and [5] where the mapping functions only depend on
the optimal states obtained by forced alignment, the mapping func-
tion of our method is derived by combining the linear transforma-
tions of different states using weights of posterior probabilities of
states. We hope that this ‘soft’ mapping function can partly deal
with the problem of spectral jumps at the boundaries of segments
resulted from forced alignment [3, 4].

2. HMM-BASED VOICE CONVERSION

Voice conversion requires to find a mapping from an utterance of a
source speaker to that of a target speaker. Let Y = F (X) denote
the mapping function where X, Y represent speech sequences of
source and target speakers, respectively. Let X = [x1, x2, ..., xT ],
where xt (1 ≤ t ≤ T ) represents a d-dimensional frame vector.
However, to find a direct mapping between two sequences is very
difficult. This is because that, a sequence usually contains a large
number of elements and the length of sequences X and Y can be
different. Therefore, many researchers reduced the sequence map-
ping to a frame-to-frame conversion problem, which is denoted by
yt = f(xt). A popular approach of this kind is to make use of
the GMM-based statistical mapping, where GMM is used to model
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the density of frame vectors [1] of a source speaker or joint vec-
tors of source and target speakers [2], and the final mapping func-
tion is the weighted combination of linear transformations estimated
for each Gaussian component. In a previous work, we proposed a
method called Mixture of Probabilistic Linear Regressions (MPLR)
[8], which unifies the two GMM-based voice conversion techniques
[1, 2] and leads to a better method for estimating mapping parame-
ters. Although the frame-to-frame mapping is simple, it only consid-
ers the current frame xt for conversion and doesn’t take account of
the contextual (dynamic) information to derive a mapping function,
which plays an important role for speech perception.

For speech signals, GMM is a density model of frame vectors.
And GMM-based mapping is a frame-to-frame conversion, which
cannot take account of the contextual information over a speech se-
quence. Partially for this reason, it is observed that the classical
GMM-based mapping usually generates overly smoothed utterances
[7]. To overcome this problem, Toda et al.[7] took consideration of
the dynamic features with a trajectory model and alleviate the overly
smoothing problem by considering a global variance feature. In this
paper, we try to solve this problem by using HMM. Different from
GMM, HMM provides a probability model for sequences and ac-
counts for the dynamic information by using transition probabilities.
The effectiveness and efficiency of HMM has been demonstrated in
both speech recognition and speech synthesis. Perhaps the most sim-
plest idea for applying HMM to voice conversion is to 1) prepare a
transformation for each state, 2) determine the optimal state of each
frame of an input utterance to be converted with forced alignment
(Viterbi decoding), and 3) convert each frame vector by the trans-
formation associated with its optimal state. This idea was adopted
by previous works [3, 4, 5]. However, forced alignment gives a hard
segmentation of the speech sequence. And this usually leads to spec-
tral jumps at the boundaries of segments, and diminishes the smooth-
ness of converted speech. In this paper, we deal with this problem by
introducing a ‘soft’ mapping function. This soft mapping function
is a weighted summation of the linear transformations of all states,
where the weights

2.1. HMM-based sequence-to-frame mapping

We use an ergodic HMM with K states to model the density of
speech sequence of source speaker. Let p(x|s) denote a state-
observation probability of frame vector x given state s, and p(s′|s)
represent a state-transition probability from state s to s′. In HMM,
the joint probability of speech sequence X = [x1, x2, ..., xT ] and
its corresponding state sequence S = [s1, s2, ..., sT ] (1 ≤ st ≤ K)
can be calculated by,

p(X, S) =P (X|S)P (S) =

T∏
t=1

p(xt|st)p(s1)

T∏
t=2

p(st|st−1).

(1)

Given state s and source vector x, we assume that target vector
y has the following linear-Gaussian distribution,

p(y|s, x) = N(y|Bsx + bs, Σs), (2)

where Bs, bs denote the linear transformation parameters, and Σs

represents the covariance matrix of the above linear-Gaussian distri-
bution. Then the expectation (mean) of y is given by Ep(y|s,x)[y] =
Bsx + bs.

With the HMM of source sequence X , we can calculate the con-
ditional probability of the t-th target vector yt given sequence X as

p(yt|X) =
∑
S∈S

p(yt, S|X) =
∑
S∈S

p(yt|S, X)p(S|X), (3)

where S is the set of possible state sequences for X .
When state st is given, we assume that target vector yt only

depends on its corresponding source vector xt. This allows us to
make the following simplification,

p(yt|S, X) = p(yt|st, xt) = N(yt|Bstxt + bst , Σst). (4)

Under this assumption, we can deduce the probability of Eq. 3 as∑
S∈S

p(yt|S, X)p(S|X) =
∑
st

p(yt|st, xt)
∑
S/st

p(S/st |X)

=

K∑
k=1

p(yt|st = k, xt)p(st = k|X), (5)

where S/st = s1, ...st−1st+1...sT . Noted that posterior probability
p(st = k|X) can be calculated efficiently by the famous backward
and forward algorithm of HMM [9]. With Eq. 5, the mapping of
sequence X to frame yt can be estimated by

fHMM(X, t) =Ep(yt|X)[yt] =

K∑
k=1

p(st = k|X)(Bkxt + bk).

(6)

2.2. Estimation of mapping parameters

In this section, we discuss how to calculate the parameters of HMM-
based mapping function of Eq. 6 from a set of training sequence
pairs (Xn, Yn)N

n=1, where source sequence Xn = [xn
1 , ..., xn

Tn
] and

target sequence Yn = [yn
1 , ..., yn

Tn
]. We assume that Xn, Yn have

been aligned by dynamic time warping, and thus both have the same
length denoted by Tn. We can train an HMM from the utterances
of source speaker by the well known Baum-Welch algorithm [9] at
first. And posterior probability p(sn

t = k|Xn) (sn
t denotes the state

of frame xn
t in Xn) can be calculated with the backward and for-

ward algorithm of HMM. Then the problem here is how to estimate
the transformation parameters {Bs, bs, Σs} for state s. In the fol-
lowing, we describe two approaches for estimating these parameters.
One is least square error (LSE) estimation and the other is maximum
likelihood (ML) estimation. For convenience, we introduce notation
rt,k,n = p(sn

t = k|Xn).

2.2.1. Least square estimation

The objective function of least square estimation is,

min
{Bk,bk}

N∑
n=1

Tn∑
t=1

|fHMM(Xn, t) − yn
t |2

=

N∑
n=1

Tn∑
t=1

|
K∑

k=1

rt,k,n(Bkxn
t + bk) − yn

t |2. (7)

This is a linear optimization problem, which can be solved directly.
For simplicity, we introduce argument vector x̂ = [xT , 1]T and set
Akx̂n

t = Bkxn
t + bk. Further, the following notations are used

Xn
k = [r1,k,nx̂1, r2,k,nx̂2, ..., rTn,k,nx̂Tn ], Xk = [X1

k , ..., XN
k ],

X = [X�
1 , X�

2 , ..., X�
K ]�, Yn = [y1, y2, ..., yTn ], and Y =
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[Y1, Y2, ..., YN ], where ’�’ denotes matrix transpose. The optimal
matrices {A∗

k} for Eq. 7 are given by

[A∗
1, A

∗
2, ..., A

∗
K ] = YX̂

�(X̂X̂
�)−1. (8)

However, this is very computationally expensive, since matrix X̂

has a size of K(d + 1) × ∑
n Tn. To overcome this limitation,

we use the following decomposition method. Remind
∑

k rt,k,n =
1 and rt,k,n > 0. According to Jensen’s inequality, we have
|∑k rt,k,n(yn

t − Akx̂n
t )|2 ≤ ∑

k rt,k,n|yn
t − Akx̂n

t |2. Therefore,
Eq. 7 can be approximated by the following upper bound,

arg min
{Ak}

∑
k

∑
n

∑
t

rt,k,n|yn
t − Akx̂n

t |2. (9)

This can be further decomposed into K independent linear optimiza-
tion problems,

arg min
Ak

∑
n

∑
t

rt,k,n|yn
t − Akx̂n

t |2. (10)

The optimal matrix for Eq. 10 is given by A#
k = YX�

k (XkX�
K)−1.

These calculations are closely related to those discussed in our pre-
vious work on MPLR [8].

2.2.2. Maximum likelihood estimation

Although least square estimation is simple and has a closed form so-
lution, it doesn’t consider the covariance matrices {Σs} in Eq. 2.
In the section, we make use of maximum likelihood (ML) estima-
tion to overcome this problem. For linear regression, LSE and ML
estimations lead to the same estimations. However, as we will see
shortly this is not the case for our problem. Formally, ML estimation
is defined as,

max
Bk,bk,Σk

∏
n

∏
t

p(yn
t |Xn)

=
∏
n

∏
t

K∑
k=1

p(sn
t = k|Xn)N(yn

t |Bkxn
t + bk, Σk). (11)

Then log likelihood function is given by,

L({Bk, bk, Σk})

=
∑

n

∑
t

log

(
K∑

k=1

p(sn
t = k|Xn)N(yn

t |Bkxn
t + bk, Σk)

)
.

(12)

For convenience, we introduce parameters γt,k,n and βt,k,n as fol-
lows γt,k,n = N(yn

t |Bkxn
t + bk, Σk) and βt,k,n =

γt,k,nrt,k,n∑
j γt,j,nrt,j,n

.

To maximize Eq. 11, we calculate the derivatives of log likeli-
hood L as,

∂L
∂bk

=
∑

n

∑
t

βt,k,n(Σk)−1(yn
t − Bkxn

t − bk) = 0, (13)

∂L
∂Bk

=
∑

n

∑
t

βt,k,n(Σk)−1(yn
t − Bkxn

t − bk)xn
t
� = 0, (14)

∂L
∂Σk

=
∑

n

∑
t

1

2
βt,k,n{(Σk)−1(yn

t − Bkxn
t − bk)

(yn
t − Akxn

t − bk)�(Σk)−1 − (Σk)−1} = 0. (15)

The above formulas don’t have closed form solutions, since {βt,k,n}
include the parameters {Bk, bk, Σk}. Then we develop the follow-
ing EM algorithm for parameter estimation.

Algorithm 1 EM algorithm for ML estimation

1: Initialize transformation parameters {Bk, bk, Σk}.
2: E-step: Calculate hidden parameters {γt,k,n} and {βt,k,n}.
3: M-step: Estimate the following parameters.

Nk =
∑

n

∑
t

βt,k,n, (16)

x̄k =
1

Nk

∑
n

∑
t

βt,k,nxn
t , (17)

ȳk =
1

Nk

∑
n

∑
t

βt,k,nyn
t , (18)

Σxx
k =

1

Nk

∑
n

∑
t

βt,k,n(xn
t − x̄k)(xn

t − x̄k)�, (19)

Σyx
k =

1

Nk

∑
n

∑
t

βt,k,n(yn
t − ȳk)(xn

t − x̄k)�, (20)

Σyy
k =

1

Nk

∑
n

∑
t

βt,k,n(yn
t − ȳk)(yn

t − ȳk)�. (21)

Update transformation parameters as

B∗
k = Σyx

k (Σxx
k )−1, (22)

b∗k = ȳk − B∗
k x̄k, (23)

Σ∗
k = Σyy

k − Σyx
k (Σxx

k )−1(Σyx
k )�. (24)

4: Evaluate the log likelihood L({Bk, bk, Σk}).
5: Terminate the procedure when convergence, otherwise go to

step 2.

3. EXPERIMENTS

We carried out experiments to evaluate the proposed two HMM-
based voice conversion methods. We made use of the ATR-503
phoneme balanced sentences in the experiments. The data set used
contains 503 utterances from a male speaker and another 503 utter-
ances from a female speaker with the same linguistic contents. The
sampling frequency is 16k Hz. For each utterance, we calculated its
24-D cepstrum sequence. We converted the female voice to the male
voice. For conversion, the training utterances of the source speaker
and the target speaker are aligned by dynamic time warping. In all
the following experiments, we use ergodic HMM for density calcu-
lation of source sequence. The cepstrum distortion [1] between the
target cepstrum vector [y1

t , ..., y24
t ] and the converted cepstrum vec-

tor [y1
c , ..., y24

c ] is defined by, CD[dB] = 10
ln 10

√
2

∑
d(yd

t − yd
c )2.

And we use the average cepstrum distortion as an objective evalua-
tion measure.

3.1. Comparison of LSE and MLE

We make comparisons between the two parameter estimation meth-
ods, least square estimation (LSE) and maximum likelihood estima-
tion (MLE). We changed the number of training utterances and the
number of states. In both experiment, the testing set includes 50
new utterances. The results are summarized in Table 1. As one can
see, LSE and MLE have very similar performance, but the cepstrum
distortion of LSE is a bit smaller than that of MLE. This is because
LSE directly optimizes squared errors. Note that as MLE requires
EM iterations, MLE is much more computationally expensive than
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Table 1. Average cepstrum distortions [dB] of LSE and MLE. (N is
the number of training utterances. M is the number of states.)

N (M = 10)
Method 10 20 30 50 100 200

LSE 5.030 4.881 4.832 4.784 4.758 4.735
MLE 5.037 4.884 4.836 4.786 4.759 4.736

M (N = 150)
Method 5 7 9 15 30 50

LSE 4.780 4.766 4.760 4.751 4.741 4.745
MLE 4.781 4.767 4.761 4.754 4.742 4.746

LSE.

3.2. Experiment 2

In this experiment, we made comparison between the proposed
HMM-based mapping method with LS estimation and the previ-
ous HMM-based mapping method [4]. We conducted two experi-
ments. In the first experiment, we fixed the states of HMM as 5 and
changed the number of training utterances. In the second experi-
ment, we changed the number of states of HMM while 150 training
utterances were used for training. The test set includes 50 differ-
ent utterances. The results are shown in Fig. 1. As one can see
that the proposed method always outperforms the previous HMM-
based conversion method. We can also find that the difference be-
tween the two methods enlarges as state number increases. This is
because as state number increases, the forced alignment of the previ-
ous method leads to more segments and thus more boundaries with
spectral jumps, which affects its performance. We also conducted
experiments to make comparison with GMM-based mapping. The
cepstral distortions of both methods are similar. The reason may
be that we only have limited data of source speaker to train ergodic
HMM. In ergodic HMM, the transition probabilities for all the state
pairs should be calculated. We cannot estimate reliable transition
probabilities from the limited data. The experimental results are still
limited here. We will examine the proposed method with bigger
database and larger numbers of states in the future.

4. CONCLUSIONS AND DISCUSSIONS

This paper studies a HMM-based sequence-to-frame mapping
method for voice conversion. We derive a novel HMM-based map-
ping function with statistical analysis, and develop two methods to
estimate transformation parameters of the mapping function, one is
least square estimation (LSE) and the other is maximum likelihood
estimation (MLE). The former can be reduced to a linear optimal
problem, and has its closed form solution. For the later, we develop
an EM-based algorithm to calculate the optimal parameters. Com-
pared with the previous GMM-based voice conversion techniques,
the use of HMM allows to account for contextual information in
speech signals. Compared to the previous HMM-based voice con-
version method, our method use a soft mapping function to avoid
spectral jumps at state boundaries. We carried out experiments to
compare LSE and MLE. The results show that both methods have
very similar performance. We also conducted a comparative exper-
iment with the previous HMM-based mapping method [4]. The re-
sults indicate that our method has a better performance in terms of
cepstrum distortion. One limitation of the current method comes
from the assumption made in Eq. 4, which states that when the state
of a source frame is given, the converted frame only depends on the

Fig. 1. Comparison of the proposed method and the previous HMM
based mapping method.

source frame and its state. This may not be strictly true in practice.
Finally, it is noted that experimental results are only limited. Sub-
jective test should be conducted to assess the proposed methods.
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