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ABSTRACT

This paper proposes a set of affine invariant features (AIFs) for se-
quence data. The proposed AIFs can be calculated directly from the
sequence data, and their invariance to affine transformation is proved
mathematically through algebraic calculation. We apply the AIFs to
speech recognition. Since the vocal tract length (VTL) difference
causes to frequency warping which can be approximated well by
affine transform on cepstral features [1], the AIFs of cepstral se-
quence provide robust features for VTL variations. We experimen-
tally examine the invariance of AIFs of speech signals, and apply
AIFs for Japanese isolated word recognition. The experimental re-
sults show that the combination of AIFs with MFCC or MFCC+Δ
can lead to higher recognition rates than MFCC or MFCC+Δ only.
Especially in the mismatched experiments, the combination with
AIFs can reduce the error rates about 30% when compared to MFCC
or MFCC+Δ only. The AIFs are expected to have other applications
than speech recognition, since their invariance is general.

Index Terms— Affine invariant feature, frequency warping,
speaker normalization, speech recognition

1. INTRODUCTION

Many pattern recognition tasks face the challenge to deal with the
variation exhibited by samples of the same category. In face recog-
nition, the same face can lead to very different images due to view-
point and illumination changes. In speech recognition, the same
text can be uttered into different acoustic observations by different
speakers or even by a single speaker in different conditions. Many
of these variations can be modeled by transformations on input pat-
terns. For example, the viewpoint change can correspond to different
3D projection matrices. Therefore, finding features invariant to cer-
tain groups of transforms plays an important role in many pattern
recognition problems.

This paper proposes a novel set of features of sequence data,
which are invariant to affine transformations. The invariance is gen-
eral and we don’t put any special constraints on affine transforma-
tions other than it is invertible. The affine invariant features (AIFs)
proposed here capture the detailed information of local frames, and
can be easily calculated. To the best of our knowledge, affine invari-
ant features have received much more attention in image processing
than in speech engineering. Flusser and Suk [2] proposed the affine-
invariant moment features through algebraic calculation. Petrou and
Kadyrov [3] made use of trace transform to design affine invariant
features. However, unlike the AIFs proposed, most of these fea-
tures are designed for 2D images, which make them unsuitable for
sequence data such as speech signals.

It is well known that the difference of vocal tract length (VTL)
induces frequency warping of speech signals. And the frequency
warping can be approximately modeled by affine transformations of

cepstral features [1]. Thus the AIFs proposed must be robust to VTL
(speaker) variations. It is noted that our AIFs are different from pre-
vious speaker or VTL invariant features [4, 5, 6] which are based on a
simple linear frequency warping assumption f ′ = αf . Our AIFs can
account for more general frequency warping functions f ′ = w(f).
The AIFs are also different from the invariant structural representa-
tion (ISR) introduced in our previous works [7, 8, 9]. ISR is based
on the Bhattacharyya distance between distributions. Thus to calcu-
late ISR, one needs to convert a cepstrum sequence to a sequence of
distributions.

The reminder of this paper is organized as follows. Section 2
formulates the affine invariant features and proves their invariance.
In Section 3, we experimentally examine the invariance of AIFs for
speech data and test the usage of AIFs for speech recognition. Fi-
nally, the paper is concluded in Section 4.

2. AFFINE INVARIANT MEASURES

This section describes the affine invariant features (AIFs) and proves
their invariance to affine transformation. Let X = [x1, x2, ..., xn]
denote a sequence of samples, where each sample (frame) is rep-
resented by a d-dimension vector xi. In speech processing, xi can
be a spectral feature vector. Xs:e = [xs, xs+1, ..., xe] represents a
segment (sub-sequence) of X .

Consider an affine (linear) transformation on xi,

x′
i = Axi + c, (1)

where transformation parameter A is a d × d full rank matrix and
c is a d-dimension vector. We use X ′ = [x′

1, x
′
2, ..., x

′
n] to denote

the sequence after transformation. Our objective is to find feature
(measure) M for sequence X and X ′, which is invariant to the affine
transformation, in other words, M(X) = M(X ′). But the AIF
defined for the whole sequence X only contains limited information,
and cannot capture the detailed local features. Therefore, here we are
interested in AIFs for local frames, denoted by M(X, i), where i is a
frame index. One may suggest to define AIF for an individual sample
(frame) xi, such as M(xi). However, for two arbitrary cepstrum
vectors x and x′ which may come from different acoustic events
(phonemes), we can always find an affine transformation between
them, e.g., A = I and c = x′ − x. This means if we use frame
level AIF , this will judge different acoustic events as the same one.
Actually, it can be shown that frame level AIF M(xi) must be a
constant.

For this reason, here we define AIF M(X, i) at segment (sub-
sequence) level. Consider segment Xi−k1:i+k2 = [xi−k1 , xi−k1+1,
..., xi, ..., xi+k2 ], which starts k1 frames before i and ends k2 frames
after index i. Note k1 has not to be equal to k2. In the next, we
will introduce a set of AIFs, which actually capture the difference
between the segment Xb = Xi−k1:i before index i and the segment
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Fig. 1. Calculation of affine invariant features

Xa = Xi+1:i+k2 after i (Fig. 1). As a preparation, we define the
mean μXs:e and the covariance matrix ΣXs:e for subsequence Xs:e

as

μXs:e =
1

e − s + 1

e∑
i=s

xi, (2)

ΣXs:e =
1

e − s + 1

e∑
i=s

(xi − μXs:e)(xi − μXs:e)T . (3)

For simplicity, let μb
i = μXi−k1:i , Σb

i = μXi−k1:i , μa
i =

μXi+1:i+k2 and Σa
i = μXi+1:i+k2 denote the means and covari-

ance matrices of Xa and Xb. Then we have seven types of affine
invariant features (AIFs) as follows,

MT1(X, i) = (μb
i − μa

i )T (Σb
i )

−1(μb
i − μa

i ), (4)

MT2(X, i) = (μb
i − μa

i )T (Σa
i )−1(μb

i − μa
i ), (5)

MT3(X, i) = (μb
i − μa

i )T (Σb
i + Σa

i )
−1

(μb
i − μa

i ), (6)

MT4(X, i) = Trace
(
(Σa

i )−1Σb
i

)
, (7)

MT5(X, i) = Trace
(
(Σb

i )
−1/2Σa

i (Σb
i )

−1/2
)

, (8)

MT6(X, i) =
|Σa

i |
|Σb

i |
, (9)

MT7(X, i) =
|Σa

i |
|Σa

i + Σb
i |

. (10)

To prove the affine invariance, we need to show MTk(X, i) =
MTk(X ′, i) (k = 1, 2, ..., 7). In the next, we only provide proofs
for k = 1 and k = 6, and the others can be examined in the
similar ways. Remind Eq. 1, we have μX′s:e = AμXs:e + c and
ΣX′s:e = AΣXs:eAT . For type-1 (Eq. 4),

MT1(X
′, i) = (μ′b

i − μ′a
i )T (Σ′b

i )
−1(μ′b

i − μ′a
i )

= (Aμb
i − Aμa

i )T (AΣb
iA

T )−1(Aμb
i − Aμa

i )

= MT1(X, i). (11)

And for type-6 (Eq. 8),

MT6(X
′, i) =

|Σ′a
i |

|Σ′b
i |

=
|AΣa

i AT |
|AΣb

iA
T |

= MT6(X, i). (12)

The types 1-3 AIFs (Eq. 4,5,6) resemble the Mahalanobis dis-
tances, which have been widely used to measure the similarity be-
tween data sets in pattern recognition. We also notice that the type-5
AIF (Eq. 8) has a similar form to an invariant Riemannian metric for
covariance matrices introduced in [10, 11]. More generally, it can
be shown that the general eigenvalues of Σa

i and Σb
i are invariant to

affine transformation. (The general eigenvalues λ are obtained by
solving |Σa

i − λΣb
i | = 0.)

We can also generalize the above AIFs to their weighted ver-
sions. These weighted AIFs are also invariant to affine transforma-
tions. Let W b = {wb

j}i
j=i−k1 denote a set of nonnegative weights

for the samples of Xi−k1:i. It is required that
∑

j wb
j = 1 for nor-

malization. Let Wb represent a (k1 + 1)× (k1 + 1) diagonal matrix

with Diag(Wb)= [wb
i−k1 , ..., wb

i ]
T . The weighted mean μ

Wb
i and

covariance matrix Σ
Wb
i can be calculated by,

μ
Wb
i =

i∑
j=i−k1

wb
jxj , (13)

Σ
Wb
i =

i∑
j=i−k1

wb
j(xj − μ

Wb
i )(xj − μ

Wb
i )T . (14)

Similarly, we can define μWa
i and ΣWa

i for Xi+1:i+k2 . Note that
the weights Wb and Wa can have different values. Then we have the
weighted versions of Eq. 4, Eq. 8, Eq. 9 as follows,

MW
T1(X, i) = (μ

Wb
i − μWa

i )T (Σ
Wb
i )−1(μ

Wb
i − μWa

i ), (15)

MW
T5(X, i) = Trace((Σ

Wb
i )−1/2ΣWa

i (Σ
Wb
i )−1/2), (16)

MW
T6(X, i) =

|ΣWa
i |

|ΣWb
i | . (17)

We can define the weighted versions of the Eq. 5, Eq. 6, Eq. 7 and
Eq. 10 similarly.

After transformation of Eq. 1, we have the weighted mean μ′Wb
i

and covariance matrix Σ′Wb
i of sub-sequences X ′b as,

μ′Wb
i = AXi−k1:iWb + c, (18)

Σ′Wb
i = AXi−k1:i

(
Wb − 1

(k1 + 1)2
1

)
(Xi−k1:i)T AT . (19)

where 1 denotes a (k1 + 1) × (k1 + 1) matrix with all the elements
as 1. Then for weighted type-1 AIF, we have,

MW
T1(X

′, i) =(μ′Wb
i − μ′Wa

i )T (Σ′Wb
i )−1(μ′Wb

i − μ′Wa

i )

=(Aμb
iWb − Aμa

i Wa)T (AΣ
Wb
i AT )−1

(Aμb
iWb − Aμa

i Wa)

=MW
T1(X, i). (20)

Similarly, we can examine the invariance of other weighted AIFs,
MW

Tk(X, i) = MW
Tk(X ′, i) (k = 2, ..., 7).

3. AFFINE INVARIANT FEATURES FOR SPEECH
RECOGNITION

One of the basic problems in automatic speech recognition (ASR) is
the inter-speaker variations of acoustic features. It is well known that
the speaker independent (SI) ASR systems have higher error rates
than the speaker dependent (SD) ASR systems. Roughly speaking,
there are two approaches to deal with the speaker variations: one is
speaker adaptation, such as, MAP [12] and MLLR [13]; the other
is vocal-tract length normalization (VTLN) [14, 15]. Speakers have
vocal tracts with different lengths. This physical difference largely
causes the acoustic variations among different speakers. The VTL
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variation can be modeled by frequency warping. Based on this ob-
servation, Umesh et al. used scale transform to construct speaker
invariant feature [4], and Irino and Patterson dealt with the VT size
by Mellin transform [5]. More recently, Mertins and Rademacher
introduced VTL invariant feature through wavelet transform [6]. All
these previous methods are based on a simple linear frequency warp-
ing function: f ′ = αf , where α is a constant. However, this is just
a rough approximation. In this paper, we consider a more general
frequency warping function f ′ = w(f). In [1], Pitz et al. showed
that the general frequency warping equals to linear (affine) transfor-
mation of cepstral features (cepstrum, mel-cepstrum or MFCC). In
Section 2, we have developed a set of affine invariant features (AIFs)
to affine transformation. If we calculate AIFs for cepstral feature se-
quence, these AIFs must be approximately invariant to frequency
warping and thus provide robust features to VTL variations.

3.1. Corpus and acoustic analysis conditions

We use a subset of the Tohoku University and Panasonic isolated
spoken word database (TMW) for evaluation [16]. The database
consists of 212 isolated Japanese words and each word is once ut-
tered by 30 males and 30 females. The sampling frequency was con-
verted to 16kHz in our experiments. For each word, we calculated
the cepstral features from speech signals by using 25ms Hamming
windows with 10ms shift.

We make use of MFCC sequences for calculating AIFs due to
their good performances on speech recognition. The calculation of
AIFs requires covariance matrices. We have executed the same ex-
periments with spectral features other than MFCC. The results are
similar, but we omit them due to space limitation. In our problem,
there usually only exist a dozen of frames (10-20) for estimating co-
variance matrices. Remind different dimensions of MFCC are highly
uncorrelated. In the following experiments, we assume to use diago-
nal covariance matrix without specific notification. An important pa-
rameter for calculating AIFs is length of sub-sequences Xb and Xa.
In our experiments, both are set as 16, that is, k1 + 1 = k2 = 16. It
was shown that most of the useful linguistic information is in mod-
ulation frequency components at the range between 1 and 16 Hz,
with the dominant component at around 4 Hz [17]. This roughly
corresponds to sub-sequence length 16.

3.2. Invariance of AIFs for speech signals

This section examines the invariance of AIFs for speech signals. As
example, we obtained two utterances of /aiueo/ pronounced through
VTs of different length and calculated their spectrograms, MFCCs
and AIFs. The results are shown in Fig. 2. One can find that the
spectrograms and MFCCs of the two utterances are very different
from each other. On the other hand, it can be seen that their AIFs are
similar.

We conducted quantitative evaluation experiments on the invari-
ance of AIFs by using TMW. The normalized DP matching score
(NDPMS) between the two feature sequence X = {x1, ..., xn} and
Y = {y1, ..., ym} is used as evaluation measure,

NDPMS(X, Y ) =

√
1
n

∑n
i=1 |xi − ywp(i)|2

(
√

Var(X) +
√

Var(Y ))/2
, (21)

where wp() denotes the DP warping path between X and Y , and
Var() represents the variance function. For each pair of utterances
with the same linguistic content but uttered by different speakers,
we calculate the NDPMS between them. Five kinds of features
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(a) Spectrograms of the two utterances
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Fig. 2. Examples of spectrograms, MFCCs and AIFs of two utter-
ances of /aiueo/.

type-1 AIF, type-3 AIF, MFCC, mel-cepstrum and FFT-cepstrum
are considered for comparison. And their average NDPMSs within
males, within females and between males and females are shown in
Fig. 3. We can find that the AIFs show much higher invariance than
MFCC, mel-cepstrum and FFT-cepstrum with respect to speaker
variance. Especially, the NDPMSs of AIFs in the mismatched case
(between males and females) is near to that of the un-mismatched
cases (within males or within females). However, for MFCC, mel-
cepstrum and FFT-cepstrum, the differences of their NDPMSs in the
mismatched and un-mismatched cases are significant.

3.3. AIFs for speech recognition

In this section, we study the recognition performances of AIFs on
TMW corpus. The evaluation results here are limited to type-3 for
its good performance and the page limitation. The training part of
TMW includes utterances from 30 speakers (15 males and 15 fe-
males), and the testing part from another 30 speakers (15 males and
15 females). We also conducted mismatched experiments, that is, we
used male utterances for training and female utterances for testing,
and vice versa. Because the type-3 AIFs (Eq. 6) highly compress
the features of all dimensions into one dimension and this can lead
to loss of useful information. We do stream division and calculate
AIFs for each stream. The stream division may reduce the invari-
ance of AIFs, but on the other hand it can preserve more informa-
tion for classification. The similar technique has been used in our
former works on invariant structural representation [9, 8] for speech
recognition. More details of stream division are discussed in [9]. We
used word-HMM for acoustic modeling and classification, and made
comparisons among AIFs, weighted AIFs (wAIFs) and classical fea-
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Table 1. Recognition rates of AIFs and weighted AIFs

Method MFCC MFCC+AIF MFCC+W-AIF MFCC+Δ MFCC+AIF+Δ MFCC+W-AIF+Δ
Un-mismatched training+testing 98.35% 99.24% 99.32% 99.47% 99.51% 99.65%

Male training+female testing 72.71% 83.22% 83.99% 82.79% 88.35% 88.75%
Female training+male testing 70.59% 83.25% 80.30% 85.34% 89.88% 88.41%
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Fig. 3. NDPMS of AIFs, cepstrum, mel-cepstrum and MFCC

tures such as MFCC, MFCC+Δ. For wAIFs, the weight of the k-th
sample is set as |k−i−0.5|. The recognition rate when using AIFs is
91.47% and the recognition rate of wAIFs is 93.90%, both of which
are lower than 98.35% of MFCC. This is because although AIFs are
more invariant to VTL (speaker) variation, the calculation of AIFs
compresses and smoothes the original features, and this calculation
can reduce certain discriminative information, which are useful for
classification.

We also carried out recognition experiments on joint feature vec-
tors, such as, MFCC+AIFs, MFCC+Δ+AIFs, MFCC+wAIFs, and
MFCC+Δ+wAIFs. The experimental results are summarized in Ta-
ble 1. We find that the combination of AIFs or wAIFs with MFCC
and MFCC+Δ can lead to better recognition rates than MFCC and
MFCC+Δ, respectively. In the mismatched experiments, the com-
bination of AIFs with MFCC can reduce the error rates 27.3% for
male training+female testing, and 29.4% for female training+male
testing. Similar results are also observed when using wAIFs for
combination. It can be seen that the use of weights can increase
the recognition rates for the un-mismatched evaluation, however its
effect to mismatched evaluation is not significant. This is partly be-
cause the weighted AIFs release the effect of smoothing, but at the
same time this may decrease their robustness to noise and variations.
It is noted that the combination of feature vectors and the simple
weights are only a preliminary step to show the usefulness of AIFs
and wAIFs. We are going to consider new layers in HMM for AIFs
and other weights for wAIFs.

4. CONCLUSIONS

This paper introduces a set of affine invariant features (AIFs) for
sequence data. The AIFs capture the relative information of se-
quence data and can be calculated directly. We apply AIFs to speech
recognition. Because the VTL difference can be approximated by
affine transformations on cepstrum features, the AIFs of cepstrum
sequence yield robust features to VTL variations. We experimen-
tally showed that AIFs have higher invariance to speaker difference
than MFCC, mel-cepstrum and cepstrum for speech signals. We also
found the combination of AIFs with MFCC or MFCC+Δ can lead to
better recognition rates than using MFCC or MFCC+Δ only through
a Japanese isolated word classification task. In the mismatched ex-

periments, the combination of AIFs with MFCC or MFCC+Δ can
reduce the error rates about 30%. The AIFs proposed have very gen-
eral invariance, which is expected to have other applications. How-
ever, the too general invariance of AIFs may cause loss of useful in-
formation and affect the final performance of AIFs. Now we are de-
veloping techniques to deal with this strong invariance. We are also
considering conducting experiments on a larger database and mak-
ing comparison with speaker normalization and adaption techniques
[14, 13]. The experimental results of this paper are preliminary. We
are also going to apply AIFs for continuous speech recognition.
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