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Abstract—Automatic estimation of pronunciation proficiency
has its specific difficulty. Adequacy in controlling the vocal organs
can be estimated from spectral envelopes of input utterances
but the envelope patterns are also affected easily by different
speakers. To develop a pedagogically sound method for automatic
estimation, the envelope changes caused by linguistic factors and
those by extra-linguistic factors should be properly separated. For
this aim, in our previous study [1], we proposed a mathematically-
guaranteed and linguistically-valid speaker-invariant representa-
tion of pronunciation, called speech structure. After the proposal,
we have examined that representation also for ASR [2], [3], [4]
and, through these works, we have learned better how to apply
speech structures to various tasks. In this paper, we focus on a
proficiency estimation experiment done in [1] and, based on our
recently proposed techniques for the structures, we carry out that
experiment again but under new and different conditions. Here,
we use smaller units of structural analysis, speaker-invariant sub-
structures, and relative structural distances between a learner
and a teacher. Results show that correlations between human
and machine rating are improved and also show extremely higher
robustness to speaker differences compared to widely used GOP
scores. Further, we also demonstrate that the proposed represen-
tation can classify learners purely based on their pronunciation
proficiency, not affected by their age and gender.

I. INTRODUCTION

How to enable computers to distinguish the spectral enve-

lope changes caused by pronunciation improvement within a

learner from the changes caused by different speakers? A good

candidate answer was proposed to this question by regarding

the pronunciation not as a mere set of language sounds but

as a system organized by the sounds [1]. In other words,

for pronunciation proficiency estimation, a focus was put not

on each segment of an utterance independently but on the

relationships among the segments of that utterance.

Language sounds of interest are organized into a system,

i.e. a speaker-invariant sound shape [5], shown conceptually

in Figure 1. The definition of the system is given by a distance

matrix among these sounds because, geometrically speaking,

a distance matrix can fix its own shape uniquely. In voice

transformation studies, speaker difference is usually modeled

as space mapping, x′=h(x). This indicates that, if sound-to-

sound distance is calculated using transform-invariant mea-

sure, the distance matrix or the speech structure becomes

speaker-invariant. In Figure 1, every sound is characterized

as distribution and sound-to-sound distance is measured using

Bhattacharyya distance (BD) because BD is invariant with any

kind of invertible transform [6]. As is well-known in ASR,
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Fig. 1. Speaker-invariant system of language sounds

Fig. 2. Jakobson’s invariant system of the French vowels

vocal tract length difference and microphone difference are

well modeled globally as c′=Ac and c′=c+b in the cepstrum

domain, respectively [7], [8].

Acoustic assessment of each sound in an utterance can be

viewed as phonetic assessment and that of the entire system

of the sounds can be regarded as phonological assessment. In

classical phonology, Jakobson proposed a theory of acoustic

and relational invariance, called distinctive feature theory. In

[5], he repeatedly emphasizes the importance of relational

and systemic invariance among speech sounds and also denies

the absolute invariance strongly. Figure 2 shows his speaker-

invariant system of the French vowels and semi-vowels.

We consider that the BD-based distance matrix is a mathe-

matical realization of Jakobson’s claim and that pronunciation

assessment should be done not by evaluating individual sounds

in a learner’s pronunciation independently but by examining

whether an adequate sound system underlies a learner’s pro-

nunciation of the target language. Based on this philosophy,

we’ve already conducted a series of studies of structure-based

CALL systems [1], [9], [10]. In addition, we’ve also done

a series of studies of structure-based ASR [2], [3], [4]. In

this paper, a proficiency estimation experiment, which was
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done in [1], is carried out again but under new and different

experimental conditions. Here, the new techniques which we

have developed for the ASR are utilized effectively for CALL

and more accurate estimation is highly expected.

II. STRUCTURE ANALYSIS FOR ASR AND CALL

In the structure-based ASR studies [2], [3], [4], to form a

BD-based distance matrix from an utterance, the utterance,

i.e. a cepstrum vector sequence, is converted to a distribution

sequence (See Figure 3). This preprocessing is implemented as

MAP-based training of an HMM and an utterance is converted

into an HMM. Once two utterances are converted into two

structures, how to match them? In the current implementation

of the structure-based ASR, two structures have to have the

same number of distributions. The matching score is simply

calculated in the following formula, which well approximates

the minimum summation of the distances between two corre-

sponding distributions after shifting and rotating a structure so

that the two structures are overlapped the best (See Figure 4).

D1(S, T ) =
√

1
M

∑
i<j

(Sij − Tij)2, (1)

where S and T are two distance matrices whose elements are

calculated as
√

BD. M is the number of distributions. In the

cepstrum domain, shift and rotation of a structure correspond

to cancellation of differences in microphone and in vocal tract

length, respectively [11]. This means that, without explicit

adaptation, the structure-based ASR gives matching scores

after global adaptation. This is why the structure-based ASR

is extremely robust to extra-linguistic differences [2], [3], [4].

In the structure-based CALL studies [1], [9], [10], a stu-

dent’s structure S and a teacher’s structure T are extracted

from their plural utterances. In [1], from about 60 sentence

utterances, a structure of the entire phonemes is formed for a

student while, in [9], [10], a vowel structure is extracted from

eleven word utterances, which contain the eleven American

English monophthongs. In [1], through structural comparison

between each student in a Japanese-English database [12] and

a specific teacher, pronunciation proficiency is automatically

estimated. The obtained scores are compared to the proficiency

scores given by five native teachers of American English and

high correlation is found. In [9], [10], D1(S, T ) is decomposed

into vowel pairs and, through pairwise structural analysis,

student-dependent and diagnostic instructions on which vowel

to correct at first are provided for each student.

III. PROFICIENCY ESTIMATION OF JAPANESE LEARNERS

READING ENGLISH SENTENCES

A. What we have developed for the structure-based ASR

The structure-based ASR experiments [2], [3], [4] enabled

us to apply the structures in a more proper way to various

tasks. In this paper, we examine the following three techniques.

As shown in Figure 3, a speech structure is a BD-based

distance matrix among speech events, namely, distributions. In

[1], phonemes were used as units of estimating distributions
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Fig. 3. An utterance structure composed only of BDs
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Fig. 4. Structure comparison through shift & rotation

and forming their structure. In [2], [3], [4], however, we

found that a phoneme-based distance matrix is too coarse to

obtain a good performance for ASR. Three to five distributions

per phoneme gave the best performance, meaning that, after

estimating usual HMMs from an utterance, its speech structure

should be formed by using states of those HMMs. The finer

structures are expected to improve the CALL performance.

The use of speech structures lead to a new normalization

technique, that is normalization of the magnitude of articula-

tory efforts. The size of a structure is highly correlated with

how articulate a speaker’s phonation is and the performance of

ASR should not be affected by this. In [2], [3], [4], the size-

normalized structures improved the ASR performance and, in

this paper, this technique is tentatively examined.

In CALL, a structure of an utterance and another structure

of another utterance are compared based on Equation (1). For

ASR, two utterances of different words should be modeled

discriminatively. In [2], [3], [4], features observed commonly

in different words were removed and not used to form their

structures. PCA, LDA, and feature selection were examined

and we found that parameter (dimension) reduction was ef-

fective to improve the performance. In this paper, adequate

selection of distribution pairs is also investigated to find the op-

timum sub-structures for estimating pronunciation proficiency

and emphasizing differences between good and bad learners.

In addition to these three techniques, we examine another

new technique, that is normalization of local and structural

differences. In [2], [3], [4], a speech structure formed from

an utterance was matched with template structure patterns,

which were statistical structure patterns trained with some

training speakers. Use of the statistical patterns can calculate

matching scores by taking parameter variances into account. In

the case of comparison between a student and a teacher using

Equation (1), however, this is impossible. Then, accidentally

large values of |Sij −Tij | can dominate pronunciation estima-

tion. To avoid this defect, the following formula is tested.

D2(S, T ) =

√√√√ 1
M

∑
i<j

{
Sij − Tij

1
2 (Sij + Tij)

}2

. (2)
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Fig. 5. Sub-structure extraction for a student and a teacher

TABLE I
CONDITION FOR THE ACOUSTIC ANALYSIS

sampling 16bit / 16kHz
windows 25ms length and 10ms shift
training data about 75 sentences per speaker
parameters MFCC + Δ + ΔPower (25dim.)
HMMs speaker-dependent, context-independent, and

1-mixture monophones with diagonal matrix
topology 5 states and 3 distributions per HMM
monophones aa,ae,ah,ao,aw,ax,axr,ay,b,ch,d,dh,eh,er,ey,

f,g,hh,ih,iy,j,jh,k,l,m,n,ng,ow,oy,p,r,s,sh,t,th,
uh,uw,v,w,y,z,zh,sil

Figure 5 shows the procedure of extracting state-based sub-

structures from two corpuses of a student and a teacher. First,

a set of speaker-dependent HMMs are trained, where each

state corresponds to an event (distribution). Then, a BD-based

distance matrix is formed. Next, by selecting an appropriate

subset of state pairs, a sub-structure is formed. This procedure

is conducted for a teacher and a learner and their sub-structures

are compared to estimate the proficiency of that learner.

B. The speech database used in the experiment

ERJ (English Read by Japanese) corpus is used in our exper-

iments, which contains eight sets of read sentence utterances

[12]. Each set is composed of about 75 sentences and they are

read by about 25 university students, among whom about a

half are male and the other are female. Those sentences are a

part of the TIMIT sentences and students of different sets read

different sentences. The eight sets cover the TIMIT sentences

completely. Proficiency scores are also provided for all the

students, which were manually given by five native teachers

of American English with good knowledge of phonetics and

Japanese English. In addition to speech and label data of

Japanese English, in the corpus, the utterances of the same

sentences read by 20 native speakers of General American

English (GA) are also included. 18 of them read a half of the

entire sentences and the remaining two read all the sentences.

In structural analysis, only a male speaker (M08) of the two is

used as a reference teacher commonly for all the 200 students.

C. Structure-based analysis and GOP-based analysis

Table I shows the acoustic analysis conditions and the

number of AE monophones is 43. From ERJ, 200 sets of

speaker-dependent monophone HMMs are trained from the

individual students. From the teacher (M08), eight sets of

HMMs are trained, each corresponding to a sentence set in

ERJ. Eventually, 208 129×129(=43×3) BD-based distance

matrices are formed in total. Using the students of all the sets

but set-6, the optimal definition of state-based sub-structures is

estimated. Selection of state pairs is incrementally and greedily

determined so as to maximize the correlation between machine

rating scores and human scores. Here, −D1 or −D2 is used

as machine scores and they are calculated by matching a stu-

dent’s sub-structure and the sub-structure of the corresponding

sentence set of the teacher. By following the obtained optimal

definition of sub-structures, those of 26 students of set-6 are

used as open data and compared to the teacher’s sub-structure.

Then, correlation between machine and human is calculated.

For comparison, the pronunciation proficiency is estimated

as GOP (Goodness Of Pronunciation) scores, i.e. posterior

probability of the intended phonemes given input utterances.

GOP (o1, ..., oT , p1, ..., pN )
= P (p1, ..., pN |o1, ..., oT )

≈ 1
N

N∑
i=1

1
Dpi

log
{

P (opi |pi)
maxq∈Q P (opi |q)

}
, (3)

where T is the length of given observation sequences and N
is the number of the intended phonemes. opi is the speech

segment obtained for pi through forced alignment and Dpi

is its duration. {op1 ,...,opN } correspond to {o1,...,oT }. Q is

the inventory of phonemes. The GOP was originally proposed

in [13] and is widely accepted as pronunciation proficiency.

Since GOP is probability ratio, it internally has a function

of canceling acoustic mismatch between teachers’ HMMs and

a learner’s utterance. In this paper, nine sets of HMMs are

prepared to calculate the GOP. Eight sets are from eight

sentence sets of the common teacher (M08). The other set

is trained with all the utterances of the 20 native teachers.

D. Results of pronunciation proficiency estimation

Results of proficiency estimation by phoneme-based struc-

ture analysis are shown in Figure 6. X-axis represents the num-

ber of selected phoneme pairs. The maximum is 43C2=903.

Colors indicate differences in normalization methods. The red

curve is obtained using relative differences of Equation (2)

and the green curve is drawn by normalizing the size of sub-

structures. The blue curve indicates no normalization.

When we used finer units of structure analysis, state-based

structure analysis, as we expected, higher correlations were

obtained, shown in Figure 7. Here, X-axis is the number of

selected state pairs and its maximum is 43×3C2=8,256. Simi-

larly to Figure 6, colors indicate differences in normalization.

Looking at both the figures, we can find easily that feature

selection works effectively to improve the performance and
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Fig. 6. Correlations with phoneme-based structure analysis
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that finer units of structure analysis, i.e. state-based sub-

structures, are also beneficial. Checking each of them, we can

find that the effect of normalization somewhat differs between

them. In the phoneme-based structure analysis, the size-based

normalization works poorly and, in the state-based structure

analysis, the effect of Equation (2) is significant. In Figure 7,

the highest correlation (0.84) is obtained with Equation (2) in

the case of 86 selected state pairs. Although this number is

small, the 172(=86×2) states cover 41 phonemes out of 43.

Figure 8 shows the results of estimating the GOP scores for

two cases. One is using the HMMs of the common teacher

and the other is using those of all the 20 AE native teachers.
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Fig. 9. Correlations with warped utterances

As in structure analysis, we carried out incremental phoneme

selection to realize discriminative comparison. This selection

is also effective here and the highest correlation (0.87) is found

at the number of 27. The performance difference between two

sets of HMMs can be interpreted as follows. Although GOP

has an internal function of mismatch cancelation, this function

works when forced alignment performs well. In some cases,

this is not the case. Then, the GOP scores of the common

teacher shows less correlations than those of all the teachers.

IV. ROBUSTNESS OF THE PROPOSED METHOD WITH

RESPECT TO SPEAKER DIFFERENCES

A. Urgent requirement for extremely robust technologies

The Japanese government decided to introduce lessons for

oral English communication to every primary school from

2011. But it is true that we don’t have a sufficient number of

English teachers. The government expects class teachers, many

of whom did not receive a good education for teaching En-

glish, to play an important role in the lessons. In this situation,

we consider that some technical solutions will be introduced to

classrooms. Automatic estimation of pronunciation proficiency

is one of the key technologies and it requires high robustness

[15] because the pronunciations of adult teachers and those of

young children have to be treated properly at the same time.

B. Robustness of the structure and the GOP

Figure 9 shows the results of proficiency estimation using

the sub-structures (the common teacher) and the GOP (all

the 20 teachers). In this case, by using frequency warping

techniques, all the input utterances of set-6 were transformed

as if they had been generated by speakers of various vocal

tract lengths. X-axis means warping parameter α [7], [8] and,

with α=−0.4/+0.4, the vocal tract length is doubled/halved,

respectively. In the figure, two speech segments which are

obtained by transforming a speech segment with α=+0.3 and

−0.3 are shown visually. Frequency warping resulted in a

drastic acoustic modification. In spite of this large change,

Figure 9 shows the extreme robustness of the sub-structures

but it also shows the extreme weakness of the GOP. We can

say definitely that even a single teacher’s sub-structure can be

used directly and effectively for any student of any size.
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C. Learning to pronounce or learning to impersonate

Basically speaking, GOP is a posterior probability and it has

an internal function of canceling acoustic mismatch between

HMMs and learners. But this function only works when

forced alignment (numerator of Equation (3)) and continuous

phoneme recognition (denominator of Equation (3)) perform

properly. With a large acoustic mismatch, however, the two

processes inevitably fail. To circumvent this, teachers’ models

(HMMs) are often adapted to learners or the models are trained

from many teachers who have similar voice quality to that of

learners. In this case, however, another critical problem ap-

pears though it is not technical but theoretical. The requirement

of no acoustic mismatch in voice quality between learners and

teachers leads us to consider that the pronunciation assessment

based on the current ASR framework such as GOP identifies

learning to pronounce as learning to impersonate [14] and it

quantifies how well learners can impersonate the model speak-

ers. In other words, the conventional pronunciation assessment

framework is just application of the impersonation assessment

technology by preparing no-mismatch conditions in advance.

But learning to pronounce is not learning to impersonate at

all. No male student tries to produce female voices when asked

to repeat what a female teacher said. No young child tries to

produce deep voices to repeat what a tall male teacher said.

They are not parrots but we have to wonder whether the con-

ventional framework assumes students as parrots [14]. Rational

teachers may be unwilling to use the products based on this

framework. As Jakobson claimed, however, students extract a

speaker-invariant sound system underling a given utternace and

try to reproduce that system orally. But inevitable differences

in size and shape of the vocal organs between a learner and a

teacher have to cause acoustic differences between them.

V. STRUCTURE-BASED CLASSIFICATION OF LEARNERS

A. Learner-based distance matrix

Using D1(La, Lb) or D2(La, Lb), where Lx stands for

a pronunciation sub-structure of learner x, it is possible to

calculate a distance matrix among all the learners. This learner-

based distance matrix enables bottom-up learner classification.

Considering the results of structure-based estimation of pro-

nunciation proficiency (See Figure 9), the learner classification

based on pronunciation (sub-)structures will be a classification

purely based on pronunciation not based on age and gender. To

verify this through comparison, we prepare another criterion

for calculating a difference between two speakers S and T .

D3(S, T ) =

√
1
M

∑
i

BD(sS
i , sT

i ), (4)

where i is a state index of the 86 selected state pairs and sT
i is a

distribution of state i and speaker T . BD means Bhattacharyya

distance and M is the number of physically different states in

the selected 86 state pairs (=90, which is out of 129=43×3).

Although both of D1(S, T ) and D2(S, T ) compare timber

contrasts between two speakers of S and T , D3(S, T ) focuses

on timber substances and, using them directly and absolutely,

two speakers are compared. The former scheme corresponds to

contrast-based (structure-based) acoustic matching [2], [3], [4]

and the latter scheme corresponds to substance-based acoustic

matching used conventionally in DTW and HMM.

26 students of set-6 were used with multiple values of α.

Here, −0.3 (very tall), 0.0, +0.3 (very short) were used and

78 (=26×3) students of different sizes were virtually created

in total. For bottom-up clustering, we used Ward’s method.

B. Results of learner classification

Figures 10 and 11 show the results of learner classification

using D2 and D3, respectively. Alphabets are student IDs.

X and X stand for taller and shorter versions of X. Color

represents gender and numbers below the student IDs are

pronunciation proficiency scores rated manually by teachers.

We can find a remarkably clear difference between the two

figures. While contrast-based comparison (D2) results in clas-

sifying the students purely according to their pronunciations,

not affected by size and gender, substance-based comparison

(D3) leads to complete classification based on size and gender.

Linguistically speaking, Figure 10 corresponds to dialect-

based speaker classification because systemic variation in the

phonemes, especially the vowels, characterizes dialects [16].

Technically speaking, Figure 10 indicates the possibility of

classifying all the individuals on earth based on their English

pronunciations. Further, for a specific learner, Googling all the

individuals can search for the one with an extremely similar

accent, who surely assesses the learner’s pronunciation as the

most intelligible because these two are the closest dialectally.

We already started classifying the Chinese speakers based on

their native dialects, sub-dialects, and sub-sub-dialects [17].

VI. DISCUSSIONS

As described in Section I, the structural representation of

speech or pronunciation was originally proposed to remove

extra-linguistic factors from speech acoustics [1] and to model

only the linguistic aspect of utterances. In Section IV-B, we

demonstrated the effectiveness of using pronunciation struc-

tures to estimate pronunciation proficiency by ignoring extra-

linguistic variations. In Section V-B, a similar and good effect

was obtained again to classify learners not affected by their age

and gender. In contrast, we claimed that GOP-based estimation

of goodness of pronunciation should be regarded as estimation

of goodness of impersonation. Further, we also showed that,

if speech sounds are compared directly among speakers, what

we obtain is classification of speakers, not pronunciations.

What is a difference between the proposed framework and

the conventional one? The answer is what to model in speech.

In the former, speech (timbre) contrasts are modeled and, in the

latter, speech substances are modeled. With speech contrasts,

we can organize them into a linguistic sound system. We

consider that Jakobson and others focused on this speaker-

invariant sound system [5]. In [18], we can find two different

definitions of the phoneme. 1) A phoneme is a class of sounds
that are phonetically (acoustically and/or articulatorily) sim-
ilar and show certain characteristic patterns of distribution
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Fig. 11. Classification of the 78 virtual students based on the substance-based comparison (D3)

in the language or dialect under consideration. This is the

absolute definition and the conventional framework is based

on this definition. 2) A phoneme is one element in the sound
system of a language having a characteristic set of interre-
lations with each of the other elements in that system. This

is the relational and contrastive definition and our proposed

framework is built on it. We already applied the contrast-based

structural representation of speech to robust ASR [2], [3], [4]

and speaker-independent speech recognition was implemented

by using only a small number of training speakers and not

using speaker adaptation techniques explicitly.

VII. CONCLUSIONS

In this paper, we carried out experiments to estimate pronun-

ciation proficiency from learners’ utterances. The experiments

had been originally done in our previous work and, in the

current work, we introduced recently developed techniques for

structure-based ASR. The results of the experiments showed

the effectiveness of sub-structures and they were also shown to

be useful in classifying learners based on their pronunciations.

Through comparison between the proposed framework and

the conventional one, we pointed out that the conventional

framework inappropriately assumes pronunciation learning as

impersonation learning. We consider that this is attributed to

inappropriate modeling of speech. Although learners don’t

imitate the voices of teachers acoustically, the conventional

framework builds acoustic models of their voices and uses

them to estimate the proficiency. What learners ignore should

be discarded when building pronunciation models of teachers.

What should be used and what should be ignored in speech?

As Jakobson claimed, in this work, we focused on the speaker-

invariant sound system underlying teachers’ utterances.
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