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Abstract. Infants acquire spoken language through hearing and imitat-
ing utterances mainly from their parents [1,2,3] but never imitate their
parents’ voices as they are. What in the voices do the infants imitate? Due
to poor phonological awareness, it is difficult for them to decode an input
utterance into a string of small linguistic units like phonemes [3,4,5,6],
so it is also difficult for them to convert the individual units into sounds
with their mouths. What then do infants acoustically imitate? Develop-
mental psychology claims that they extract the holistic sound pattern of
an input word, called word Gestalt [3,4,5], and reproduce it with their
mouths. We address the question “What is the acoustic definition of word
Gestalt?” [7] It has to be speaker-invariant because infants extract the
same word Gestalt for a particular input word irrespective of the person
speaking that word to them. Here, we aim to answer the above question
by regarding speech as timbre-based melody that focuses on holistic and
speaker-invariant contrastive features embedded in an utterance.

1 Introduction

Many speech sounds are produced as standing waves in a vocal tube, and their
acoustic characteristics mainly depend on the shape of the tube. No two speakers
have the same tube, and speech acoustics vary by speaker. Different shapes cause
different resonances, which cause different timbre1. Similarly, different vowels are
produced in a vocal tube by changing the tube’s shape. Acoustically speaking,
both differences between speakers and differences between vowels arise from
the same cause. Speech features can also be changed by other factors such as
features of a microphone, acoustics of a room, transmission characteristics of a
line, auditory characteristics of a hearer, etc.

Despite the large acoustic variability, humans can accurately perceive speech.
How is this done? Despite the progress of speech science, the contrast between the
1 In musicology, timbre of a sound is defined as its spectral envelope pattern.
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variability of speech acoustics and the invariance of speech perception remains an
unsolved problem [8]. Speech engineering has attempted to solve this problem
by collecting large numbers of samples corresponding to individual linguistic
categories, e.g. phonemes, and modeling them statistically. IBM announced that
they had collected samples from 350,000 speakers to build a speech recognizer
[9]. However, no child needs this many samples to be able to understand speech.
Perhaps the majority of the speech a child hears is from its mother and father.
After it begins to talk, about a half of the speech a child hears is its own speech.

Developmental psychology explains that infants acquire spoken language by
imitating the utterances of their parents. It is a tenet of anthropology that this
behavior is found in no primates other than humans [2]. Further, we can say with
certainty that infants never imitate the voices of their parents and that this is a
clear difference from the vocal imitation of myna birds who imitate many sounds
(cars, doors, animals, etc) as well as human voices. Hearing an adept myna bird
say something, one can identify its owner [10]. However, the vocalizations of a
child offer no clue as to the identity of its parents. What in the parents’ voices
do infants imitate? Due to poor phonological awareness, it is difficult for them to
decode an input utterance into a string of phonemes [3,4,5,6], so it is also difficult
to convert the individual phonemes into sounds. What then do infants imitate
acoustically? Developmental psychology claims that they extract the holistic
sound pattern of an input word, called word Gestalt [3,4,5], and reproduce it
with their mouths. What then is the acoustic definition of word Gestalt? It must
be speaker-invariant because infants can extract the same Gestalt irrespective
of the person talking to them. To the best of our knowledge, no researcher has
yet succeeded in defining it [7].

We recently formulated the above problem as a mathematical one and found a
holistic and speaker-invariant representation of speech [11,12]. Here, an utterance
is regarded as timbre-based melody. We did an experiment to test this repre-
sentation. Acoustic models built with samples from only eight speakers based
on the representation showed a slightly better recognition rate than Hidden
Markov Models (HMMs) built with 4,130 speakers [13,14]. When we formulated
the variability-invariance problem, we referred heavily to old and new findings in
studies of linguistics, anthropology, neuroscience, psychology, language disorder,
and musicology. Based on these findings and our results, we believe that infants
extract the holistic and speaker-invariant contrastive features of speech.

2 Absolute Sense and Relative Sense of Sounds

2.1 Perception of Different Sounds as Identical

Figure 1 shows two utterances of /aiueo/, produced by two speakers. The one
on the left was generated by a 200-cm-tall speaker and the one on the right was
generated by an 80-cm-tall speaker. Although there is a large acoustic difference
between the utterances, it can easily be perceived that they carry the same lin-
guistic content, that is, /aiueo/. How do we perceive this equivalence in different
stimuli? Do we perceive the equivalence after converting the two utterances into
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Fig. 1. Linguistic content of /aiueo/ uttered by two different speakers and the same
piece of music played in two different keys

two phonemic sequences (sound symbol sequences) and finding the string-based
equivalence between the two?

We think that the current speech recognition technology requires an answer of
yes to the above question because the technology is based on a sound-to-symbol
conversion technique that identifies separate sounds as single units among the
linguistic sound categories, i.e. phonemes. However, this strategy dictates that
acoustic models of the individual phonemes have to be made with samples from
many speakers because a symbol corresponds to a variety of sounds.

Young children can also perceive the equivalence between the two utterances.
Developmental psychology claims that infants do not have good phonemic aware-
ness or a firm grasp of sound categories. This means that it is difficult for them
to symbolize a separate sound and that invariance in perception is not due to
string-based comparison. As explained in Section 1, infants first learn the holis-
tic sound patterns in utterances and the individual phonemes later. This implies
that invariance in perception must be based on comparison of holistic patterns.
The question then is “What is the acoustic definition of the holistic and speaker-
invariant pattern in speech?”

2.2 Relative Sense of Sounds in Music – Relative Pitch

Figure 1 also shows two pieces of the same melody performed in two different
keys; C-major (top) and G-major (bottom). Although the acoustic substance of
the two performances is very different, humans can easily perceive the equivalent
musical content. When one asks a number of people to transcribe the two pieces
as sequences of Do, Re, Mi, etc, three kinds of answers can be expected. Some
will answer that the first one is So-Mi-So-Do La-Do-Do-So and the second one
is Re-Ti-Re-So Mi-So-So-Re. These people are said to have absolute pitch (AP)
and Do, Re, and Mi are pitch names for them, i.e. fixed Do. Others will claim
that, for both pieces, they hear in their minds the same internal voices of So-Mi-
So-Do La-Do-Do-So. They are said to have relative pitch (RP) and can verbalize
a musical piece. For them, Do, Re, and Mi are syllable names, i.e. movable Do.
The last group will not be able to transcribe the music, singing only “La-La-La-
La La-La-La-La” for both. They also have RP but cannot verbalize a musical
piece. They perceive the equivalence without sound-to-symbol conversion and
only with a melody contour comparison. It should be noted that the RP people,
the second and third groups, cannot identify a separate tone as one among the
tonal categories.
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Fig. 2. Musical scales in octaves and a Japanese vowel chart using F1 and F2

AP people can memorize the absolute height of tones and use the heights to
name musical tones. RP people capture the difference in the height between two
tones (musical interval). If one explicitly defines the acoustic height of the Do
sound, all the RP people, including the “La-La” people, can verbalize a given
melody based on that definition. The difference between the second and third
groups is that the former do not need a helper to define Do acoustically. How
can they name the individual tones with no memory of the absolute height of
tones? This ability is due to the tonal scale embedded in music, and, because this
scale structure is key-invariant, the second group of people can easily identify
the incoming tones independently of key.

Figure 2 shows three musical scales, all of which consist of octaves, eight tones
in a group. The first two are well-known Western music scales, called major and
minor. The third one is an Arabic music scale. For major and minor scales, an
octave is divided into 12 semitone intervals, and eight tones are selected and
arranged so that they have five whole tone intervals and two semitone ones. If
C is used for tonic sound (the first sound) in a major scale, the key is called
C-major and the tonal arrangement is invariant with key. The second group of
people keeps the major and minor sound arrangements in memory and, based
on these key-invariant arrangements, can identify the individual tones [15]. This
is why they cannot symbolize a separate tone but can identify tones in a melody
independently of key. Therefore, they find it difficult to transcribe a melody im-
mediately after modulation in key. In contrast, people with AP can naturally
transcribe the individual tones as pitch names even immediately after modula-
tion. They sometimes do not notice the key change at all, but their identification
is key-dependent, i.e., not robust at all.

RP people are capable of key-invariant and robust identification of tones be-
cause they dynamically capture the key-invariant sound arrangement [15]. In the
following section, a similar mechanism is considered for speech perception.

2.3 Relative Sense of Sounds in Speech – Relative Timbre

A mother’s voice is higher and a father’s voice is lower because, in general, male
vocal chords are heavier and longer [16]. A mother’s voice is thinner and a father’s
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Fig. 3. Dynamic changes in pitch in CDEFG and changes in timbre in /aiueo/

voice is deeper because, in general, male vocal tracts are longer [16]. The former
difference is one of pitch and the latter is one of timbre. The importance of RP is
often discussed with regard to the former difference. People with strong AP tend
to take a longer time to perceive the equivalence between a musical piece and a
transposed version of it [17]. They often have to translate one symbol sequence
consciously into another one to confirm the equivalence. Considering these facts,
a similar mechanism, i.e. relative timbre, is hypothesized to explain why infants
can perceive the equivalence between the two utterances in Figure 1 but cannot
distinguish discrete symbols in the utterances.

As far as we know, however, all the discussions of sound identification in
speech science and engineering have been based on absolute identification. How
is it possible to discuss the relative identification of speech sounds based on
invariant sound structure? Music consists of dynamic changes in pitch. Similarly,
speech consists of dynamic changes in timbre. In Figure 3, a sound sequence of
CDEFG played on a piano and a speech sound sequence of /aiueo/ are shown.
Dynamic changes are visualized in a phase space. Pitch is a one-dimensional
feature of F0 and timbre is tentatively shown as a two-dimensional feature of
F1 and F2. Cepstrum coefficients can also be used to expand the timbre space.
Tonal transposition of a melody translates the dynamic changes in F0 but the
shape of the dynamics is not altered. If the non-linguistic factors of speech such
as speaker, microphone, etc, do not change the shape of the speech dynamics,
the relative identification of speech sounds can be implemented on machines.

3 Robust and Structural Invariance Embedded in Speech

3.1 Mathematical Derivation of the Invariant Structure

As shown in the Japanese vowel chart in Figure 2, the male vowel structure
can be translated into the female vowel structure. If the translation is accurate
enough, the timbre dynamics can be easily formulated as invariant because dif-
ferences in speakers do not change the sound arrangement and only transpose it
multidimensionally. However, every speech engineer knows that this idea is too
simple to be effectively applied to real speech data.



Consideration of Infants’ Vocal Imitation Through Modeling Speech 31

x

y

u

v

A

B
f

g

Fig. 4. Linear or non-linear mapping between two spaces

What kind of function can map the acoustic space of speaker A into that
of speaker B: linear or non-linear? This question has been frequently raised
in speaker adaptation research on speech recognition and speaker conversion
research on speech synthesis. Figure 4 shows two acoustic spaces, one each for
speakers A and B. Acoustic events p1 and p2 of A are transformed to q1 and q2
of B, respectively. If the two spaces have a one-to-one correspondence and point
(x, y) in A is uniquely mapped to (u, v) in B and vice versa, transform-invariant
features can be derived [18,13]. Every event is characterized as distribution:

1.0 =
∫
©
∫

pi(x, y)dxdy, 1.0 =
∫
©
∫

qi(u, v)dudv. (1)

We assume that x=f(u, v) and y=g(u, v), where f and g can be non-linear. Any
integral operation in space A can be rewritten as its counterpart in B.

∫∫
φ(x, y)dxdy =

∫∫
φ(f(u, v), g(u, v))|J(u, v)|dudv (2)

=
∫∫

ψ(u, v)dudv, (3)

where ψ(u, v) = φ(f(u, v), g(u, v))|J(u, v)|. J(u, v) is Jacobian. Then, we get

qi(u, v) = pi(f(u, v), g(u, v))|J(u, v)|. (4)

Physical properties of pi are different from those of qi. p1 may represent /a/ of
speaker A and q1 may represent /a/ of B. We can show that the Bhattacharyya
distance (BD) between two distributions is invariant with any kind of f or g.

BD(p1, p2) = − log
∫
©
∫ √

p1(x, y)p2(x, y)dxdy (5)

= − log
∫
©
∫ √

p1(f(u, v), g(u, v))|J | · p2(f(u, v), g(u, v))|J |dudv (6)

= − log
∫
©
∫ √

q1(u, v)q2(u, v)dudv (7)

= BD(q1, q2) (8)

The BD between two events in space A and that between their corresponding
two events in space B cannot be changed. Substances can change easily, but their
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Fig. 5. Speaker-invariant structure in a cepstrum space without time axis

contrasts cannot be changed by any static transformation. The invariance is also
satisfied with other distance measures such as the Kullback-Leibler distance. In
this study, after some preliminary experiments, we adopted the BD.

The shape of a triangle is uniquely determined by fixing the lengths of all
three sides. Similarly, the shape of an n point geometrical structure is uniquely
determined if the lengths of all the nC2 segments, including the diagonal ones,
are given. In other words, if a distance matrix is given for n points, the matrix
completely determines the shape of the n-point structure. As stated above, the
BD is robustly transform-invariant. When n distributions are given, their BD-
based distance matrix represents its robustly-invariant structure. An invariant
structure can be extracted from an utterance. Figure 5 shows this procedure in
a cepstrum space. After converting an utterance into a sequence of distributions,
all the BD-based timbre contrasts between any two distributions are calculated.

3.2 Discussions of Structural Representation

Figure 6 shows Jakobson’s geometrical system of French vowels [19]. He claimed
that the same vowel system could be found irrespective of the speaker. It is
well-known that Jakobson was inspired by the assertions of Saussure, the father
of modern linguistics, who claimed that language is a system of conceptual and
phonic differences and that the important thing in a word is not the sound alone
but the phonic differences that make it possible to distinguish that word from
all others [20]. The proposed invariant, holistic, and contrastive representation
of an utterance can be regarded as a mathematical and physical interpretation
of Saussure’s claims and Jakobson’s claims [11,12]. We discard sound substances
and extract only phonic contrasts from an utterance because the former are very
fragile and the latter are robustly invariant.

If Western music is played with the Arabic scale shown in Figure 2, it will
take on a different color, i.e. Arabic accented Western music. This is also the
case with speech. If the vowel arrangement of an utterance is changed, it will
be a regionally accented pronunciation. Figure 6 also shows the vowel structures
of two accented pronunciations of American English, plotted after vocal tract
length normalization [21]. The vowel arrangement can change the color of pro-
nunciation. There is good functional similarity between the sound structure in
musical tones and that in vowel sounds. The difference may be just observations.
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Fig. 6. Jakobson’s geometrical structure of French vowels [19] and two accented pro-
nunciations of American English [21]

Figure 3 shows a dynamic pattern or trajectory of pitch and of timbre. The
pitch (melody) contour is often defined as a sequence of local pitch movements
(ΔF0), that is key-invariant. Similarly, the timbre contour can be defined as
a sequence of local timbre movements (Δcepstrum), that is strongly speaker-
dependent. It was mathematically and experimentally shown that vocal tract
length differences change and rotate the direction of the timbre contour [22].
For example, with a frequency warping technique, a speech sample uttered by a
male adult can be modified to sound like that of a boy. The warping operation
shifts formant frequencies higher, that is, it makes them sound like the speaker
is shorter. The direction of the Δcepstrum of a frame in the original speech and
that of the corresponding frame in the modified speech was calculated. It was
found that the timbre direction of a 170-cm-tall speaker and that of a 100-cm-
tall speaker were approximately orthogonal. The directional difference became
larger as the speaker’s simulated height was increased or decreased. Further, the
rotation of the timbre contour was not dependent on phonemes [22]. These results
clearly indicate that the direction of local timbre dynamics is strongly dependent
on the speaker. This is why, as shown in Figure 5, the directional components of
the local dynamics are discarded and only the contrasts are extracted as scalar
quantities. It should be noted that the proposed framework captures both local
timbre contrasts and temporally distant contrasts.

4 Investigation Using Speech Recognition Research

4.1 Structural Acoustic Matching between Two Utterances

When two utterances are represented as different structures, how is the matching
score between the two utterances to be calculated? As shown above, no transform
can change the structure, which means that any transform can be interpreted as
one of two geometrical operations, rotation or shift. As shown in Figure 7, the
matching score for the two utterances is calculated as the minimum of the total
distance between the corresponding two distributions (points in the figure) after
shift and rotation. It was shown experimentally in [23] that minimum distance
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D could be approximately calculated as a Euclidean distance between the two
matrices, where the upper-triangle elements form the structure vector;

D(P, Q) =
√

1
n

∑
i<j

(Pij − Qij)2, (9)

where Pij is an (i, j) element of P and n is the number of distributions.

4.2 Verification of Structural Speech Recognition

To investigate the fundamental characteristics of the proposed framework, we
examined automatic recognition of isolated words [13,14]. Here, a word was de-
fined artificially as a connected vowel utterance. Since Japanese has the five
vowels, /aiueo/, V1-V2-V3-V4-V5 (Vi �=Vj) utterances like /eoaui/ were used as
words. The vocabulary size, i.e. perplexity, is 5P5 (=120).

Eight male and eight female speakers recorded five utterances for each of
the 120 words for a total of 9,600 utterances. Half of the samples from four
males and four females were used for training and the others for testing. Since
the proposed framework can eliminate differences between speakers well, only
eight speakers were used for training. The recognition framework is shown in
Figure 8. Vector sequences were converted into distribution sequences as MAP-
based HMM training. Word templates were stored as statistical models averaged
over structure vectors of each word’s utterances.

As a comparison, an isolated word recognizer using tied-mixture triphone
HMMs trained with 4,130 speakers [24] was built. Mel-frequencey cepstrum coeffi-
cients (MFCC) and its Δ were used with cepstral mean normalization (CMN). The
word-based and vowel-based recognition rates are shown in Table 1. Although the
proposed method completely discarded speech substances, it performed almost
as well as the HMMs, which used both static and dynamic features. It should be
noted that direct comparison is not fair because, for HMMs, the experiment was
task-open, but, for the proposed framework, it was task-closed. In spite of this, we
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Table 1. Recognition rates of the two methods

HMM Proposed
#speakers 4,130 8
word-based 97.4 98.3
vowel-based 98.8 99.3

can say that the proposed holistic and structural representation of speech identi-
fies words well. Detailed descriptions of the recognition experiments are found in
[13,14,25].

5 Investigation Using Speech Perception Research

5.1 Perception of Speaker-Variable and Size-Variable Speech

The RP people who can verbalize a given melody as a syllable name sequence
have troubles transcribing it for some time immediately after the key has been
modulated. We showed experimentally that this was also the case with speech
[11]. Speaker-variable word utterances were generated with speech synthesis tech-
niques and presented to human subjects. The speaker-variable utterances are
those whose speaker information changes along the time axis. For example, the
speaker is changed mora by mora or phoneme by phoneme. The presented stimuli
were meaningless words. It was found that changing the speaker significantly de-
graded the transcription performance. Timbre changes due to speaker changes
tended to be perceived as phoneme changes. However, the performance of a
speech recognizer for the same stimuli was not degraded because the recognizer
used speaker-independent HMMs trained with 4,130 speakers. A similar finding
was obtained in another study [26] where size-variable speech samples were used.

In music, “La-La” people can enjoy music and can perceive the equivalence
between a musical piece and a transposed version of it without symbolizing tones.
We built a “La-La” machine, for which the two utterances in Figure 1 were
completely identical but for which speech sound symbolization was impossible.
We thought that this machine was a good simulator of infants’ abilities and
wondered whether this holistic speech processing could be found in adults.

5.2 Holistic Speech Processing Found in Adult Listeners

We found the answer in previous studies [27,28] done by another research group.
Figure 2 shows a Japanese vowel chart. If vowel sounds of people the size of giants
and those of people the size of fairies are obtained, they have to be plotted
outside the ranges of existing people because formant frequencies depend on
vocal tract length. Can subjects identify these vowel sounds in isolation? If they
have difficulty with separate vowels, can they identify a continuous utterance
more easily? The speaker-invariant holistic patterns are also embedded even in
utterances of giants and fairies.
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Fig. 9. Vowel identification rates without/with acoustic context [28]

Figure 9 (left) shows the identification rates of isolated Japanese vowels gen-
erated with various F0s and body sizes. X and Y indicate F0 and the ratio of
frequency scaling in the spectrum, respectively. In the figure on the left, a vowel
sample at (x, y) means that F0 is x Hz and, roughly speaking, body height is
170/y cm (5.6/y ft.). Three circles are the ranges of F0 and body height for adult
males, adult females, and children. Within these ranges, the identification rates
are better than 90%. It is very difficult to absolutely identify separate vowels
uttered by giants and fairies. For 65-cm-tall fairies (2.1 ft.) with an F0 of 160 Hz,
the performance is chance level (20%). Figure 9 (right) shows the identification
rates of vowels in four-mora unknown words. Here, a vowel at (x, y) has an F0 of
160x Hz. When giants and fairies say something in connected speech, subjects
are reasonably able to identify the individual sounds even though the utterance
is meaningless. For 65-cm-tall fairies, people can identify the sounds with about
60% accuracy. If known words are presented, performance will improve. With
familiar words, it will improve drastically.

For “La-La” people, the request, “Remember the third tone in the next
melody. Listen to another melody and raise your hand if you hear the same
tone.” is very difficult to execute. Unless tones are symbolized, people will ex-
perience difficulty. Some people may have similar difficulty with the request,
“Remember the third sound in the next utterance. Listen to another utterance
and raise your hand if you hear the same sound.” Unless sounds are symbolized,
people will have difficulty. To the best of our knowledge, two types of people have
this kind of difficulty: young children and dyslexics. Their phonemic awareness
is very weak [4]. Dyslexics are said to be good at seeing a whole tree but bad
at seeing individual leaves [4,29]. However, both groups enjoy speech commu-
nication and can easily perceive the equivalence between the two utterances in
Figure 1.

5.3 Non-robust Processing with Only Absolute Sense of Sounds

People with strong AP have some difficulty perceiving the equivalence between
a musical piece and a transposed version of it [17]. Musicians with strong AP
whose reference tone (A above middle C) is fixed at 440 Hz often have troubles
performing music. An acoustic version of the reference tone depends on the
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orchestra playing it and it is sometimes 442 or 445 Hz. This small difference is
difficult for AP musicians to accept. Absolute processing has to be non-robust.

If people have a strong absolute sense of speech sounds, they are likely to
have difficulty perceiving the equivalence between the two utterances in Figure 1.
Some autistics, who are considered to be good at seeing leaves but bad at seeing
a whole tree [30,31], fall into this category. An autistic Japanese boy wrote that it
was easy to understand his mother’s speech but difficult to understand the speech
of others [32]. However, it was also difficult for him to understand his mother’s
speech over the phone. He was able to write before he could speak, and spoken
language was always difficult for him. Another autistic boy imitated voices as
myna birds do, but spoken language was difficult also for him [34]. Autistics
are much better at memorizing individual stimuli separately and absolutely as
they are, but they are much worse at extracting holistic patterns hidden in the
stimuli than non-autistic people [30,31]. It is explained in [30] that autistics lack
the drive towards central coherence (Gestalt) and live in a fragmented world.

No child with normal hearing imitates voices, but myna birds and some autis-
tics try to imitate voices as they are. Every speech synthesizer learns and imi-
tates the voices of a single speaker. Every speech recognizer learns the voices of
so many speakers by statistically modeling the acoustic features of the individ-
ual allophones separately and absolutely. However, the robustness in recognizing
speech is far lower than that of humans. We cannot help considering the similar-
ity between speech systems and autistics. In the 90’s, AI researchers found that
the robots sometimes behaved like autistics [33]. Both robots and autistics were
bad at dealing with small environmental changes, known as the frame problem.
AI researchers and therapists have recently been collaborating [33]. For them,
making robots more suited to the real world and helping autistics become more
accustomed to it are similar problems. Considering these facts, we think that
speech engineers may have to face the same problem that AI researchers have.

6 Discussion and Conclusion

Anthropological studies showed that, basically speaking, no primates other than
humans have relative pitch [35,36,37]. This is because relational processing re-
quires a higher cognitive load than absolute processing. Therefore, other primates
have difficulty perceiving the equivalence between the two musical pieces shown
in Figure 1. Since pitch is one-dimensional and timbre is multi-dimensional, rel-
ative timbre processing should require an even higher load. What kind of behav-
ior will be observed when the two utterances shown in Figure 1 are presented
to chimpanzees? What if one of them is presented directly and the other is pre-
sented over the phone? If they cannot perceive the equivalence, human spoken
language must also be very difficult. Researchers in the field of anthropology
have made many attempts to teach human language to chimpanzees but most
of them used visual tokens, not oral ones. Human vocal sounds failed to work as
tokens even after being presented an enormous number of times [38]. However,
young children can easily perceive the equivalence in different samples of speech.
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We think that this invariant perception owes much to relative timbre, where an
utterance is perceived as a timbre-based melody.

Finally, we want to carry out a thought experiment. Suppose that the parents
of identical twins get divorced immediately after the twins are born and that
one twin is taken in by the mother and the other is taken in by the father. What
kind of pronunciation will the twins have acquired after ten years? The twins do
not produce voices that sound, respectively, like the mother and like the father.
However, there is an exceptional case in which the twins’ pronunciations will be
very different: when the parents are speakers of different regional accents. Timbre
difference based on difference in speakers does not affect the pronunciation but
that based on regional accents does. Why? The simplest explanation is that
infants do not learn the sounds as they are but learn the sound system embedded
in spoken language. The proposed representation extracts the invariant system
embedded in an utterance. We believe that this is the answer to the question.
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