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Abstract
Finding measures (or features) invariant to inevitable variations
caused by non-linguistical factors (transformations) is a funda-
mental yet important problem in speech recognition. Recently,
Minematsu [1, 2] proved that Bhattacharyya distance (BD) be-
tween two distributions is invariant to invertible transforms on
feature space, and develop an invariant structural representation
of speech based on it. There is a question: which kind of mea-
sures can be invariant? In this paper, we prove that f -divergence
yields a generalized family of invariant measures, and show that
all the invariant measures have to be written in the forms of
f -divergence. Many famous distances and divergences in in-
formation and statistics, such as Bhattacharyya distance (BD),
KL-divergence, Hellinger distance, can be written into forms of
f -divergence. As an application, we carried out experiments on
recognizing the utterances of connected Japanese vowels. The
experimental results show that BD and KL have the best perfor-
mance among the measures compared.
Index Terms: f -divergence, invariant measure, invertible
transformation, speech recognition

1. Introduction
Speech signals inevitably exhibit variations caused by non-
linguistic factors, such as, gender, age, noise etc. The same
text can be converted to different acoustic observations due to
the differences of speaker and environments. Modern speech
recognition methods deal with these variations largely by us-
ing the statistical methods (such as GMM, HMM) to model the
distributions of the data. These methods can achieve relatively
high recognition rates when using proper models and sufficient
training data. However, to estimate reliable distributions, these
methods always require a large number of samples for training.
The successful commercial speech recognition systems always
make use of millions of data from thousands of speakers for
training [3]. However, it is very different from children’s spo-
ken language acquisition. A child does not need to hear the
voices of thousands of people before he (or she) can under-
stand speech. This fact largely indicates that there may exist
robust measures of speech which are nearly invariant to non-
linguistic variations. It is by these robust measures, we con-
sider that young children can learn speech by hearing very bi-
ased training data called “mother and father”. This fact is also
partly supported by recent advances in the neuroscience, which
shows that the linguistic aspect of speech and the non-linguistic
aspect are processed separately in the auditory cortex [4].

Recently, Minematsu found that Bhattacharyya distance
(BD) is invariant to transformations (linear or nonlinear) on fea-
ture space [1, 2], and proposed an invariant structural represen-
tation of speech signal. Our previous works have demonstrated
the effectiveness of invariant structural representation in both
speech recognition task [5, 6, 7] and computer aided language

Table 1: Examples of f -divergence

distance or divergence corresponding g(t) (t = pi(x)
pj(x)

)

Bhattacharyya distance 1
√

t
KL-divergence t log(t)

Symmetric KL-divergence t log(t) − log(t)
Hellinger distance (

√
t − 1)2

Total variation |t − 1|
Pearson divergence (t − 1)2

Jensen-Shannon divergence 1
2
(t log 2t

t+1
+ log 2

t+1
)

learning (CALL) systems [8, 9].
There is a question: are there invariant measures other than

BD, or, more generally, which kind of measures can be invari-
ant? In this paper, we show that f -divergence [10, 11] provides
a family of invariant measures and prove all invariant measures
of integration type must be written as the forms of f -divergence.
f -divergence family includes many famous distances and diver-
gences in information and statistics, such as, Bhattacharyya dis-
tance, KL-divergence, Hellinger distance, Pearson divergence,
and so on. We also carried out experiments to compare several
well-known forms of f -divergence through a task of recogniz-
ing connected Japanese vowel utterances. The experimental re-
sults show that BD and KL have the best performance among
the measures compared.

2. Invariance of f -divergence
In probability theory, Csiszár f -divergence [10] (also known as
Ali-Silvey distance [11]) measures the difference of two distri-
butions. Formally,

fdiv(pi(x), pj(x)) =

Z
pj(x)g(

pi(x)

pj(x)
)dx, (1)

where pi(x) and pj(x) are two distributions on feature space
X . g(t) is a convex function defined for t > 0, and
g(1) = 0. X can be a n-dimensional space with coordinates
(x1, x2, ..., xn). In this way, Eq. 1 is a multidimensional inte-
gration and dx = dx1dx2...dxn. Generally, it is required that
fdiv(pi(x), pj(x)) ≥ 0 for any two distributions pi(x), pj(x).
It can be proved that fdiv(pi(x), pj(x)) = 0, if and only if
pi(x) = pj(x) [12]. Many well known distances and diver-
gences in statistics and information theory can be seen as spe-
cial examples of f -divergence. Table 1 lists some examples.

Consider feature space X and two distributions pi(x) and
pj(x) in X (x ∈ X). Let h : X → Y (linear or nonlinear)
denote an invertible mapping (transformation) function, which

1Bhattacharyya distance is a function of a f -divergence:

BD(pi, pj) = − log
R

(pi(x)pj(x))1/2dx = − log fdiv(pi, pj).
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Figure 1: Invariance of f -divergence.

convert x into new feature y. In this way, distributions pi(x) and
pj(x) is transformed to qi(y) and qj(y), respectively. We wish
to find measures invariant f to transformation h, f(pi, pj) =
f(qi, qj). The invariant measures can serve as robust features
for speech analysis and classification. We have the following
theorem as shown in Fig. 1.

Theorem 1 The f -divergence between two distributions is in-
variant under invertible transformation h on feature space X ,

fdiv(pi(x), pj(x)) = fdiv(qi(y), qj(y)). (2)

Proof Under transformation y = h(x), distribution qi(y) is
calculated by,

qi(y) = pi(h
−1(y))J(y), (3)

where h−1 denotes the inverse function of h, and J(y) is the ab-
solute value of the determinant of the Jacobian matrix of func-
tion h−1(y).

Recall dx = J(y)dy, we have,

fdiv(pi, pj)

=

Z
pj(x)g(

pi(x)

pj(x)
)dx

=

Z
pj(h

−1(y))g(
pi(h

−1(y))J(y)

pj(h−1(y))J(y)
)J(y)dy

=

Z
qj(y)g(

qi(y)

qj(y)
)dy

= fdiv(qi, qj).� (4)

Let F : R → R denote any real value function. It is easy
to see that F (fdiv(pi(x), pj(x))) is also invariant to transfor-
mation. In the next, we consider a more general form of Eq. 1,
M(pi(x), pj(x)) =

R
G(pi(x), pj(x))pj(x)dx, which we call

integration measure. There is a question, whether or not there
exist invariant integration measures other than f -divergence?
The answer is NO.

Theorem 2 All the invariant integration measures have to be
written in form

R
pj(x)g( pi(x)

pj(x)
)dx.

Proof Assume M(pi, pj) =
R

pj(x)G(pi(x), pj(x))dx
be an invariant integration measure, M(pi(x), pj(x)) =
M(qi(y), qj(y)). We have,

M(pi, pj)

=

Z
pj(x)G(pj(x), pi(x))dx

=

Z
pj(h

−1(y))G(pi(h
−1(y)), pj(h

−1(y)))J(y)dy

=

Z
qj(y)G(qi(y)J(y)−1, qj(y)J(y)−1)dy

≡ M(qi(y), qj(y) =

Z
qj(y)G(qi(y), qj(y))dy. (5)

Remind that qj(y) can be any distribution function. Thus the
following equations must always hold,

G(qi(y)J(y)−1, qj(y)J(y)−1) ≡ G(qi(y), qj(y)). (6)

Otherwise, we can find qj(y) that breaks Eq. 5.
Introduce functions t(y) = qi(y)/qj(y) and G′(t, qj) =

G(qi, qj). Thus Eq. 6 becomes:

G′(t(y), qj(y)J(y)−1) ≡ G′(t(y), qj(y)). (7)

Remind that we don’t have any limitations on transformation h.
Thus it is possible to set that qj(y) = J(y). Then, we have,

G′(t(y), qj(y)) ≡ G′(t(y), 1). (8)

Therefore G′(t(y), qj(y)) can be written into the form
of G′(t(y)) = g(qi(y)/qj(y)). In this way, we
prove that M(pi(x), pj(x)) has to be written in the formR

pj(x)g( pi(x)
pj(x)

)dx. �

Theorem 1 and Theorem 2 together show the sufficiency
and necessary of the invariance of f -divergence. Generally,
f -divergence may not be a metric, since it may not sat-
isfy symmetry rule (fdiv(pi(x), pj(x)) �= fdiv(pj(x), pi(x)))
and subadditivity triangle inequality (fdiv(pi(x), pj(x)) +
fdiv(pj(x), pk(x)) < fdiv(pi(x), pk(x))). But there exist spe-
cial forms of f -divergence, which is also a metric. Hellinger
distance is such an example, HD(pi, pj) =

R
(
p

pi(x) −p
pj(x))2dx.

3. Calculation of f -divergence
There is a problem of how to calculate f -divergence. Unfortu-
nately, in general case, there exists no closed-form solution for
f -divergence of Eq. 1. However, when distributions are Gaus-
sian, there may exist closed-form solutions. Assume pi(x) and
pj(x) are Gaussian distributions with mean μi and μj and co-
variance Σi and Σj , respectively. The canonical parametriza-
tion of pi(x) is,

pi(x) = exp (αi + ηT
i x − 1

2
xT Λix), (9)

where Λi = Σ−1
i , ηi = Σ−1

i μi and αi = −0.5(d log 2π −
log|Λi| + ηt

iΛiηi). Similarly, we have

pj(x) = exp (αj + ηT
j x − 1

2
xT Λjx). (10)

Then, Eq. 1 can be written into,

fdiv(pi(x), pj(x)) =

Z
exp (αj + ηT

j x − 1

2
xT Λjx)

g(exp(αi − αj + (ηi − ηj)
T x − 1

2
xT (Λi − Λj)x))dx.

(11)

The above form is near to Fourier transform or bilateral Laplace
transform which has been widely studied. Many forms of
g can lead to closed form solutions of the integrations of f -
divergence. Some examples are given as follows,

1) Bhattacharyya distance:

BD(pi(x), pj(x)) =

1

8
(μi − μj)

T (
Σi + Σj

2
)−1(μi − μj) +

1

2
log

|(Σi + Σj)/2|
|Σi|1/2|Σj |1/2

.

(12)
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2) KL divergence:

KL(pi(x), pj(x)) =

1

2
(log

|Σj |
|Σi| + tr(Σ−1

j Σi) + (μj − μi)
T Σ−1

j (μj − μi)).

(13)

3) Hellinger distance:

HD(pi(x), pj(x)) = 1 − exp(−BD(pi(x), pj(x))). (14)

In general case, we can use Monte-Carlo sampling to cal-
culate f -divergence. But this is always computationally expen-
sive, especially when x has a high dimension. When pi(x) and
pj(x) are Gaussian mixtures, one may consider approximated
techniques, such as, unscented transform [13] and variational
approximation for fast calculation [14].

4. Invariant structural representation using
f -divergence

f -divergence can be used to construct the invariant structural
representation of a pattern. Consider pattern P in feature space
X . Suppose P can be decomposed into a sequence of m
events {pi}m

i=1. Each event is described as a distribution pi(x).
We calculate the f -divergence dP

ij between two distributions

pi(x), pj(x), and construct an m × m divergence matrix DP

with DP (i, j) = dP
ij and DP (i, i) = 0. Then DP provides a

structural representation of pattern P . Assume there is a map
f : X → Y (linear or nonlinear) which transforms X into a
new feature space Y . In this way, pattern P in X is mapped to
pattern Q in Y , and event pi is transformed to event qi. Sim-
ilarly, we can calculate structure representation DQ for pattern
Q. From Theorem 1, we have that DQ = DP , which indi-
cates that the structural representation based on f -divergence is
invariant to transformations on feature space.

In the next, we describe a brief introduction on how to ob-
tain a structural representation from an utterance [1, 5]. As
shown in Fig. 2, at first, we calculate a sequence of cepstral fea-
tures from input speech waveforms. Then an HMM is trained
based on that cepstrum sequence and each state of HMM is
regarded as event pi. Thirdly we calculate the f -divergences
between each pair of pi and pj . These distances will form an
m×m distance matrix D with zero diagonal, which is the struc-
tural representation. For convenience, we can expand D into a
vector z with dimension m(m − 1). If the f -divergence used
satisfies the symmetry rule fdiv(pi, pj) = fdiv(pj , pi) (for ex-
amples, Bhattacharyya distance, Hellinger distance, total varia-
tions), D is a symmetric matrix. In this case, we only need use
the upper triangle of D and z has dimension m(m − 1)/2.

It can be shown that many non-linguistic variations [1, 2],
such as the length of vocal tract [15], can be modeled as the
transformation of feature space. Suppose that X and Y repre-
sent the acoustic spaces of two speakers A and B, and P and
Q represent two utterances of A and B, respectively. Then h
can be seen as a mapping function from A’s utterance to B’s.
In fact, this problem has been widely addressed in the speaker
adaptation of speech recognition research and the speaker con-
version of speech synthesis research. In Maximum Likelihood
Linear Regression (MLLR) based speaker adaption [16], a lin-
ear transformation: y = h(x) = Hx + d is used, where H
and d denote rotation and translation parameters respectively.
For matching utterances P and Q, the speaker adaption meth-
ods need to explicitly estimate transformation parameters (i.e.

Cepstrum distribution

sequence (HMM)

Structure (distance matrix)

p
1

Speech waveforms

Cepstrum vector sequence

f  

0
0

0
0

0

z = (z  , z  , ... )1 2

p
1

p
2

p
m

divergences

Figure 2: Framework of structure construction.

p1

p2

p3p4

p5
q1

q2

q3q4

q5
O

1

2

3
4

5

Figure 3: Utterance matching by shift and rotation.

H and d), which lead to the minimum difference. This mini-
mum difference serves as a matching score of utterances. [2]
showed that the acoustic matching score of two utterances after
shift and rotation (Fig.3) can be approximated only with the dif-
ference of the two structures of the utterances without explicitly
estimating transformation parameters.

5. Experiments
To compare the performance of various forms of f -divergence
on speech recognition, we used the connected Japanese vowel
utterances [5] in experiments. It is known that acoustic features
of vowel sounds exhibit larger between-speaker variations than
consonant sounds. Each word in the data set corresponds to a
combination of the five Japanese vowels ‘a’,‘e’,‘i’,‘o’ and ‘u’,
such as ‘aeiou’,‘uoaie’, ... . So there are totally 120 words.
The utterances of 16 speakers (8 males and 8 females) were
recorded. Every speaker provides 5 utterances for each word.
So the total number of utterances is 16×120×5=9,600. Among
them, we use 4,800 utterances from 4 male and 4 female speak-
ers for training and the other 4,800 utterances for testing.

For each utterance, we calculate the twelve Mel-cepstrum
features and one power coefficient. Then HMM training is used
to convert a cepstrum vector sequence into 25 events (distri-
butions). Since we have only one training sample, we used
an MAP-based learning algorithm [17]. Each state (event) of
a HMM is described by a 13-dimension Gaussian distribution
with a diagonal covariance matrix. Following [5], we divided
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Table 2: Comparisons of recognition rates

Method NN NM GM RDSA

Bhattacharyya dis. 93.0% 95.6% 96.4% 98.2%
Hellinger dis. 89.0% 95.1% 56.6% 96.0%

symmetric KL-div. 93.2% 95.6% 96.4% 98.4%

Figure 4: Comparison of the recognition rates of different dis-
tances and different numbers of speakers in training data.

the 13D cepstrum feature steam into 13 multiple sub-streams
and calculated the structures for each sub-stream. So an utter-
ance is represented as a set of 25 × 24 × 13 = 7, 800 edges.
More details can be found in our previous works [5, 6].

We calculated the Bhattacharyya distance (BD), Hellinger
distance (HD) and symmetric KL-divergence (SKL) for build-
ing structures, respectively. As for classification, we used the
following classifiers: nearest neighbors (NN), nearest mean
(NM), Gaussian distribution model (GM) and random discrim-
inant structure analysis (RDSA) [6]. For NN and NM, Eu-
clidean distance is used. For GM, we used diagonal covari-
ance matrices. For RDSA [6], we used 20 randomly selected
sub-structures with each structure 700 edges. The results are
summarized in Table 2. We can find that the performances of
symmetric KL-divergence and Bhattacharyya distance are sim-
ilar. And Hellinger distance has the lowest recognition rates.

We reduces the numbers of speakers in training data. We
randomly selected k (1 ≤ k ≤ 7) speakers from the 8 training
speakers and use their data for learning the classifiers. For each
k, we repeat this procedure 8 times and calculate the average
recognition performance. The RDSA classifier is used for clas-
sification due to its good performance. The results are given in
Fig. 4.

6. Conclusions
This paper proves that f -divergence between two distributions
is invariant to invertible transformation (linear and nonlinear) on
feature space, and show all invariant integration measures have
to be written in the forms of f -divergence. We discuss how to
construct an invariant structural representation of an utterance
by using f -divergences. We compare the recognition perfor-
mance of several well-known forms of f -divergences through
speech recognition experiments. The results show that Bhat-
tacharyya distances and symmetric KL-divergence achieve the
best performance. It is noted that the invariance of f -divergence
is very general, and doesn’t limit to speech signal. The pro-

posed theories may have applications in other pattern analysis
and recognition tasks.
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