
Metric Learning for Unsupervised Phoneme Segmentation

Yu Qiao and Nobuaki Minematsu

Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
{qiao, mine}@gavo.t.u-tokyo.ac.jp

Abstract
Unsupervised phoneme segmentation aims at dividing a speech
stream into phonemes without using any prior knowledge of lin-
guistic contents and acoustic models. In [1], we formulated this
problem into an optimization framework, and developed an ob-
jective function, summation of squared error (SSE) based on
the Euclidean distance of cepstral features. However, it is un-
known whether or not Euclidean distance yields the best metric
to estimate the goodness of segmentations. In this paper, we
study how to learn a good metric to improve the performance
of segmentation. We propose two criteria for learning met-
ric: Minimum of Summation Variance (MSV) and Maximum
of Discrimination Variance (MDV). The experimental results
on TIMIT database indicate that the use of learning metric can
achieve better segmentation performances. The best recall rate
of this paper is 81.8% (20ms windows), compared to 77.5%
of [1]. We also introduce an iterative algorithm to learn met-
ric without using labeled data, which achieves similar results as
those with labeled data.
Index Terms: Unsupervised phoneme segmentation, optimiza-
tion, Mahalanobis distance, metric learning

1. Introduction
Phoneme segmentation is a basic problem in speech engineer-
ing. The objective of phoneme segmentation is to divide a
speech stream into a string of phonemes. Both automatic
Speech Recognition (ASR) and Text-to-Speech (TTS) systems
need correct segmentation information for improving their per-
formances. Human speech is a smoothly changing continuous
signal due to the temporal constraints of vocal tract motions,
which does not include explicit separation marks such as white
spaces in written language. The difficulty of phoneme segmen-
tation also comes from the co-articulation of speech sounds,
where acoustic realization of one phoneme may blend or fuse
with its adjacent sounds. This phenomenon can even exist at a
distance of two or more phonemes. All these facts make auto-
matic phoneme segmentation a challenging problem.

Previous approaches to phoneme segmentation can be clas-
sified into two categories: supervised and unsupervised seg-
mentation. In the first case, both the linguistic contents and the
acoustic models of phonemes are available. Perhaps the most
famous approach in this category is HMM-based forced align-
ment [2]. The second category tries to perform phonetic seg-
mentation without using prior knowledge on linguistic contents
and acoustic models. The approach of this paper belongs to the
second class. The unsupervised segmentation is similar to the
situation that infants acquire spoken language [3]. They don’t
have acoustic and linguistic models. However, psychological
facts indicate that infants become able to segment speech ac-
cording to acoustic difference between speech sounds and clus-
ter speech segments into categories [4]. It is by this procedure

that infants can gradually construct the their spoken language
models.

Most of the previous methods dealt with this problem by
detecting the change points in a speech stream. Aversano et.
al [5] identified the boundaries as the peaks of jump function.
Dusan and Rabiner [6] detected the “maximum spectral transi-
tion” positions as phoneme boundaries. Estevan et. al [7] em-
ployed maximum margin clustering to locate boundary points.
In our earlier work [1], we formulated the segmentation prob-
lem as an optimization problem by using statistics and informa-
tion theory analysis, and developed a simple objective function,
the Summation of Square Error (SSE) based on Euclidean dis-
tance (ED). The experimental results [1] showed that minimiz-
ing SSE by Agglomerative Segmentation (AS) algorithm can
achieve better results than previous methods [5, 6, 7]. However,
Euclidean distance may not be the best metric to evaluate the
goodness of segmentation. [8] found that weighted cepstral dis-
tance gave better performance than ED for DTW based speech
recognition. Generally speaking, for a segmentation task, a
good metric should be small between two feature vectors within
the same phoneme, while preserve large between two feature
vectors from different phonemes. In this paper, we study how
to learn a metric to improve the performance of segmentation.
We limit our analysis to the metric of Mahalanobis distance
form for its simpleness and linearity. The essential problem
here is how to determine the parameters (covariance matrix) for
Mahalanobis distance calculation. We deal with this problem
in a learning framework and develop two criteria for determin-
ing the parameters: Minimum of Summation Variance (MSV)
and Maximum of Discrimination Variance (MDV). MSV tries
to minimize the summation of variance within phonemes, while
MDV aims at maximizing the variance between phonemes and
minimizing the variance within phonemes at the same time. We
propose an algorithm to estimate parameters without using la-
beled sequences. The proposed methods are evaluated through
experiments on the TIMIT database. The experimental results
indicate that the learning metric can improve the segmentation
results. We also found that the results can be further improved
by incorporating power coefficients.

2. Optimal segmentation
This section describes a brief review of our previous work on
optimal segmentation [1]. Let X = x1, x2, ..., xn denote a se-
quence of mel-cepstrum vectors calculated from an utterance,
where n is the length of X and xi is a d-dimensional vector
[x1

i , x
2
i , ..., x

d
i ]T . The objective of segmentation is to divide

sequence X into k non-overlapping contiguous subsequences
(segments) where each subsequence corresponds to a phoneme.
Use S = {s1, s2, ..., sk} to denote the segmentation informa-
tion, where sj = {cj , cj + 1, ..., ej} (cj and ej denote the start
and end indices of the j-th segment.). Let Xcj :ej (or Xsj ) rep-
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resent the j-th segment xcj , xcj+1, ..., xej .
For speech signal, it is natural to make the assumption

that acoustic observations of each phoneme is generated from
an independent source. Let R = {r1, r2, ..., rk} denote
the phoneme sequence, and p(xi|rj) represent the probability
model of observing xi given source rj . Thus we have,

p(X|S, R) =

kY
j=1

Y
i∈sj

p(xi|rj) =

kY
j=1

ejY
i=cj

p(xi|rj). (1)

Then the optimal segmentation can be formulated as

Ŝ = arg min
S
{− log(p(X|S, R))}. (2)

Like most speech applications, we assume that rj is a multi-
variable normal distributions whose mean and covariance ma-
trix are denoted by mj and Σj . If we further fix Σj as an unit
matrix I and only estimate mean m̂j = 1/|sj |

P
x∈sj

x [1].
(The use of other covariance matrices leads to Mahalanobis dis-
tance, which will be discussed in the next sections.) We can
show Eq. 2 reduces to minimize the following Summation of
Squared Error function (SSE) [1],

fSSE(X, S) =

kX
j=1

ejX
i=cj

||xi − m̂j ||2. (3)

The above formula is the same as the objective function of k-
means clustering (Chapter 3.5 [9]). The difference is that k-
means needs not consider the time constraint, which is impor-
tant for phoneme segmentation problem. In [1], we introduced
the Agglomerative Segmentation (AS) algorithm to find optimal
segmentations, which has a time complexity of O(n).

3. Metric learning for segmentation
The SSE objective (Eq. 3) is based on simple Euclidean dis-
tance, where each dimension of cepstrum features is treated
equally and the correlations between these features are ignored.
However, in real problems, the cepstrum features can be corre-
lated and different features may have different weights for seg-
mentation. The Euclidean distance comes from the use of I as
covariance matrix. We may consider another covariance ma-
trices. Let Σ denote a full rank covariance matrix. Euclidean
distance ||xi − xj ||2 can be generalized to Mahalanobis dis-
tance (xi − xj)

T Σ−1(xi − xj). In this way, we can define a
Mahalanobis distance based objective function as follows,

fMD(X, S) =

kX
j=1

ejX
i=cj

(xi − m̂j)
T Σ−1(xi − m̂j). (4)

If Σ is a diagonal, this is equal to weighted cepstrum features,

fw(X, S) =

kX
j=1

ejX
i=cj

dX
q=1

wq(x
q
i − m̂q

j)
2, (5)

where wq denotes the weight of q-th cepstrum feature. If
Σ is not diagonal, we can apply eigen-decomposition on it :
Σ = UT ΛU , where U consists of the eigen vectors and Λ
is a diagonal matrix whose diagonal components are the eigen
values. Then, Eq. 4 can be written into a SSE form with trans-
formed features Ax:

fMD(X, S) =

kX
j=1

ejX
i=cj

||Axi −Am̂j ||2, (6)

where the transformation matrix A = Λ−1/2U . It is easy to
examine that AT A = Σ−1. The formulation of Eq. 6 allows
us to use the Agglomerative Segmentation (AS) algorithm [1]
to optimize the objective function Eq. 4 .

In classical Mahalanobis distance, Σ is estimated as the co-
variance matrix of the total data of an utterance

Σ =
1

n

nX
i=1

(xi −m)(xi −m)T , (7)

where mean m =
Pn

i=1 xi/n. However, this calculation only
considers the statistical characteristics of the whole data. We
are more interested in a distance metric which is small enough
for cepstral features within the same phoneme while keeps large
enough for cepstral features of different phonemes. Here the
question is how to estimate covariance matrix Σ. Suppose
there exists a set of training utterances D with labeled phoneme
boundaries. In the next, we will develop two criteria which min-
imize the feature variance within the same phoneme and (or)
maximize feature variance between different phonemes. As-
sume |Σ| = 1 to avoid scaling factors.

3.1. Criterion 1: minimization of summation variance

The first criterion is to find matrix Σ, which minimizes the sum-
mation of variances within phonemes. Mathematically, this can
be formulated as

min
Σ

MSV (D, Σ) =

min
Σ

X
X∈D

hPk
j=1

Pej

i=cj
(xi − m̂j)

T Σ−1(xi − m̂j)
i
, (8)

where m̂j is the mean of the j-th segment in utterance X . De-
fine within-phoneme variance matrix of utterance set D

Sw =
X

X∈D

kX
j=1

ejX
i=cj

(xi − m̂j)(xi − m̂j)
T . (9)

In the following, we deduce the optimal solution for Eq. 8.
Remind AT A = Σ−1, Eq. 8 can be written into

MSV (D, Σ) = Tr(ASwAT ), (10)

where “Tr” denotes the trace of a matrix.
Since |AT A| = 1, we have the Lagrangian function of Eq.

8 as follows,

L(A, λ) = Tr(ASwAT ) + λ(|AT A| − 1). (11)

Calculating the derivative of Eq. 11 to A, we have

∂L(A, λ)

∂A
=

∂Tr(ASwAT )

∂A
+

∂λ(|AT A| − 1)

∂A

= 2ASw + 2λ|AT A|A−T = 0. (12)

Since AT A = Σ−1, the optimal covariance matrix of Eq.
8 can be calculated by,

ΣMSV =
1

|Sw|1/d
Sw. (13)
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3.2. Criterion 2: maximization of discriminant variance

The 2nd criterion will simultaneously take account of the vari-
ance of within and between adjacent phonemes, that is to max-
imize the between phoneme variances and minimize the within
phoneme variances. Formally,

max
Σ

X
X∈D

k−1X
j=1

ej+1X
i=cj

(xi − m̂j,j+1)
T Σ−1(xi − m̂j,j+1) (14)

min
Σ

X
X∈D

kX
j=1

ejX
i=cj

(xi − m̂j)
T Σ−1(xi − m̂j), (15)

where m̂j,j+1 is the mean of the j-th and the j + 1-th segment
in X . It is noted that we only consider the between variances of
two adjacent phonemes in Eq. 15. This is because, for phoneme
segmentation, the same phoneme may appear more than one
time in a single sequence, and for segmentation problem the
difference of adjacent phonemes are most important.

Define between-phoneme variance matrix of D as

Sb =
X

X∈D

k−1X
j=1

ej+1X
i=cj

(xi − m̂j,j+1)(xi − m̂j,j+1)
T . (16)

Then, Eq. 14, 15 can be reduced to,

max
Σ

Tr(ASbA
T ), (17)

min
Σ

Tr(ASwAT ). (18)

This is a multi-objective problem. We need to convert it to a
single objective one. Basically, there are two choices. One is
based on the subtraction of trace

min
Σ
{Tr(ASwAT )− αTr(ASbA

T )} (19)

where α is a coffecient; the other is based on ratio of trace, 1

max
Σ

Tr(ASbA
T )

Tr(ASwAT )
. (20)

Eq. 19 can be optimized by using the same techniques of MSV,

ΣMDV−ST =
Sw − αSb

|Sw − αSb|1/d
. (21)

However, there is no close form solution for Eq. 20. [10]
showed an approximate answer for Eq. 20 as

ΣMDV−RT =
S−1

b SwS−1
b

|S−1
b SwS−1

b |1/d
. (22)

3.3. Metric learning without labeled data

In Section 3.1 and 3.2, we assume there is a set of data with
labeled boundary information for estimating Σ. However, there
are two limitations, 1) a set of labeled data must be available
for learning the optimal matrix, and 2) once Σ is learned it is
fixed and cannot adapt to the new data. In this Section, we
will develop an Iterative Segmentation Algorithm (ISA) which
doesn’t need any labeled data. The ISA uses SSE to initiate
segmentation S, and then iteratively update S and Σ. Details of
ISA are given in Algorithm 1.

1Readers may suggest to use trace ratio maxΣ Tr( ASbAT

ASwAT ) as a
criteria, which is widely adopted in linear discriminant analysis (LDA).
However, it can be proved that trace ratio is invariant to Σ.

Algorithm 1 Iterative Segmentation Algorithm
1: INPUT A set of utterance D = {X}, the number of seg-

ments kX for each utterance X and the maximum iteration
number T .

2: Initialize Σ0 as an unit matrix I and iteration index t = 0.
3: while Not Convergence and t < T do
4: For each utterance X , calculate its optimal segmentation

St
X . (Σ is set as Σt.)

5: Calculate St
w based on segmentations St

X .
6: Update Σt by using MSV.
7: t = t + 1.
8: end while
9: OUTPUT segmentation St

X .

The ISA is somewhat near to the mechanism of infants’
speech acquisition. Psychological researches indicate that in-
fants do not have acoustic models of the phonemes of their na-
tive languages, but they have the ability to discriminate sounds
[4]. This discriminant ability resembles the metric we used
for segmentation, which enable infants to preliminarily segment
speech signals. Then the infants can adapt their sound discrim-
inant ability based on the segmentation results. This procedure
is considered to repeat during the infants build acoustic models
of their native languages.

4. Experiments
We use the training part from the TIMIT American English
acoustic-phonetic corpus [11] to evaluate and compare the pro-
posed objective functions. The database includes 4,620 sen-
tences from 462 American English speakers of both genders
from 8 dialectal regions. It includes more than 170,000 bound-
aries, totally. The sampling frequency is 16kHz. For each sen-
tence, we calculate the spectral features from speech signals by
using 16ms Hamming windows with 1ms shift, and then trans-
form spectral features into 12 mel-cepstrum coefficients. The
agglomerative segmentation (AS) algorithm [1] is used to find
the optimal segmentation. The stop number of the AS algo-
rithm is set as the number of phonemes in a sentence. For
each method, we count how many ground truth boundaries are
detected within a tolerance window (20∼40ms) and calculate
the recall rates for comparison. Due to the space limitation,
the evaluation results on other criteria, such as F-measure, are
omitted. However, it is noted that evaluation results based on
F-measure show the same conclusion as that on recall rate.

4.1. Experiment 1: segmentation by metric learning

In 1st experiment, we make comparisons between Euclidean
distance (ED), classical Mahalanobis distance (MD) (Eq. 7),
and learning Mahalanobis distance with parameters Σ estimated
by MSV (Eq. 13), MDV-ST (Eq. 21) and MDV-RT (Eq. 22) for
segmentation. In classical MD, the covariance matrix is calcu-
lated for each utterance. Among all 4,620 utterances, we ran-
domly select 56 sentences for learning the covariance matrix of
MSV, MDV-ST and MDV-RT. The results are summarized in
Table 1. We can find that classical MD does not lead to better
performance than Euclidean distance, while MD using learning
parameters (MSV, MDV-RT and MDV-ST) can improve the re-
call rates compared to ED and classical MD. Among all these
methods compared, MSV has the best results. But the results of
MSV, MDV-RT, and MDV-ST are very near.
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Table 1: Recall rates using ED, MD and learning MD
Method ED MD MSV MDV-RT MDV-ST
20ms 76.8% 73.6% 77.7% 77.6% 77.2%
30ms 86.7% 86.3% 88.2% 87.9% 88.1%
40ms 92.4% 92.9% 93.7% 93.5% 93.8%

Table 2: Recall rates using unlabeled data
Iteration t 0 1 2 3 10

20ms 76.8% 76.9% 77.4% 77.6% 77.9%
30ms 86.7% 87.8% 87.2% 87.8% 87.9%
40ms 92.4% 93.6% 92.7% 93.4% 93.3%

4.2. Experiment 2: metric learning from unlabeled data

In 2nd experiment, we use iterative segmentation algorithm de-
scried in Section 3.3 to calculate matrix Σ and segmentation
from unlabeled data. The segmentation results are summarized
in Table 2. It can be seen that we only need to execute itera-
tive segmentation algorithm for a few iterations (2 or 3) to ob-
tain good segmentation results. The increase of iteration num-
ber does not lead to significant improvements of recall rates. It
can also be seen that the unsupervised learning MD can achieve
comparable results with supervised learning MD in Section 4.1.

4.3. Experiment 3: incorporation of power

In the above two experiments, we only made use of cepstral co-
efficients and did not consider power coefficient. In the next,
we take account of power coefficient into the segmentation cost
function. Let oi denote a power coefficient at i-th frame. Ba-
sically, there are two methods to incorporate power. One is to
augment cepstrum vector xi into a new vector xi = [xi, oi].
The other is to consider power and cepstrum independently,

fp(X, S) =

kX
j=1

ejX
i=cj

{(xi − m̂j)
T Σ−1(xi − m̂j)+

β(oi − ôj)
2}, (23)

where ôj is the average power of the j-th segment and β is a
constant to take the balance between cepstrum and power. In
our experiments , β = 1.

We conducted experiments to compare the two different
methods, where Σ is estimated by MSV (Eq. 13) and MDV-
RT (Eq. 22) due to their good performance. The results are
shown in Table 3, where ‘P1’ denotes the augmented vector
method and ‘P2’ denotes the method of Eq. 23. We find that
the using of power features can improve the recall rates about
3-5 percents. The second method to incorporate power (treat
power and cepstrum independently) usually achieves better re-
sults than the first method (use of argument feature vector).

4.4. Comparisons with other methods

We make comparisons with other published results. Tolerance
window size is set as 20ms, since it is most widely used. Our
best recall rate is 81.8% shown in Table 3. In [6], with the
same database, the authors showed a detected rate of 84.5%,
and among them 89% are within 20ms. So their rate is 0.845×
0.89=75.2%. Moreover, our insertion rate is 20.9%, which
is lower than 28.2% shown by [6]. [7] used the testing part
of TIMIT database with less number of sentences (1,344) and

Table 3: Recall rates using Power
Method MSV+P1 MSV+P2 MDV-RT+P1 MDV-RT+P2
20ms 79.0% 81.4% 80.2% 81.8%
30ms 89.3% 90.0% 89.4% 89.8%
40ms 94.4% 94.3% 94.2% 94.0%

showed a recall rate of 76.0%. In [5], the authors obtained an
recall rate of 73.6% from a subset of TIMIT database ( 480 sen-
tences). The best recall rate in our previous work [1] is 77.5%.
Moreover, unlike the best method in [1], we do not need to cal-
culate the determinant of covariance matrix for each possible
segmentation which is computationally expensive. Although
our results are still lower than those of the HMM-based seg-
mentation methods [2], we do not make use of linguistic con-
tents and acoustic models in unsupervised segmentation.

5. Conclusions
This paper investigates how metric learning can improve the
performance of unsupervised phoneme segmentation. We de-
velop two optimization criteria for metric learning, namely,
minimization of summation of variance (MSV) and maximiza-
tion of discriminant variance (MDV). We deduce the optimal
solutions of MSV and MDV by using matrix calculation. We
also propose an iterative segmentation algorithm (ISA) to learn
the parameters of MSV from unlabeled data. The experimen-
tal results on the TIMIT database show that the use of learning
metric can improve segmentation performance. The ISA with
unlabeled data achieves similar recall rates as those with labeled
data. We also find that the segmentation results can be further
improved by incorporating power coefficient. Compared with
our previous work [1], the recall rate is increased to 81.8% from
77.5%. Finally, it is noted that the proposed criteria MSV and
MDV can have other applications more than segmentation.
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