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ABSTRACT

Speech communication has several steps of production, encoding,
transmission, decoding, and hearing. In every step, acoustic distor-
tions are involved inevitably as differences of vocal tract length, gen-
der, age, microphone, room, line, hearing characteristics, etc. These
are static non-linguistic factors and completely irrelevant to speech
recognition. Although the spectrogram always carries these factors,
almost all the speech applications have been built on this noisy rep-
resentation. Recently, the first author proposed a novel representa-
tion of speech, called the acoustic universal structure[1, 2]. What
is represented here is only the interrelations among speech events
and their absolute properties are discarded completely. It is very in-
teresting that the non-linguistic factors can be removed effectively
from speech as cepstrum smoothing of the spectrogram can remove
pitch information from speech. The first author already used this new
representation in some speech applications[3, 4] and, in this paper,
its theoretical background is described in detail from the viewpoints
of linguistics, psychology, acoustics, and mathematics with some re-
sults of recognition experiments and perceptual experiments. It is
shown that the new representation can be viewed as speech Gestalt.

1. INTRODUCTION

Speech is very variant due to acoustic distortions caused by the non-
linguistic factors. In spite of the variations, human listeners can ex-
tract linguistic information from speech so easily as if the variations
can never disturb the communication at all. One may hypothesize
that listeners adapt their internal acoustic models whenever either
of a speaker, a room, a microphone, or a line is changed. An-
other may hypothesize that the linguistic information in speech can
be represented acoustically and separately from the non-linguistic
factors. Recent studies of brain sciences proposed neuroanatomical
models of the auditory cortex, where the linguistic features and the
non-linguistic features in speech are separately processed in differ-
ent regions of the human brain[5]. The acoustic universal structure
was derived as invariant acoustic properties based on a mathematical
model of the speech variations due to the non-linguistic factors.

Most of the current speech recognizers are based on phone-based
HMMs; speech is modeled as a linear string of phones, like beads
on a string[6]. In these systems, a phone has no explicit internal
structure beyond the HMM topology. To improve the robustness of
speech recognition, some previous studies investigated the use of the
internal structure of a phone based on distinctive features[7, 8, 9]. In
this approach, a phone or phoneme is regarded as a bundle of features
and the features are considered as the minimum units of speech. It is
well-known that the distinctive features, acoustic and/or articulatory,
were introduced into structural phonology by Jakobson[10].

Though the acoustic universal structure was partly inspired from
structural phonology, it focuses on the external structure of speech.

This is because the distinctive features were originally introduced
to represent the external structure. Putting it another way, although
the features were firstly used to describe differences or contrasts be-
tween phonemes, they were eventually used to define the individual
phonemes absolutely and independently as bundles of features.

2. EXTERNAL STRUCTURE OF SPEECH

“Language is a system of only conceptual differences and phonic
differences.” This is a famous phrase of Saussure, father of mod-
ern linguistics[11]. “What defines a linguistic element, conceptual
or phonic, is the relation in which it stands to the other elements
in the linguistic system.” “The important thing in the word is not
the sound alone but the phonic differences that make it possible
to distinguish this word from the others.” Being inspired by these
claims, Jakobson introduced the distinctive features originally to de-
scribe the phonic differences. Figure 1 shows a consonant triangle
and a vowel triangle proposed by Jakobson[10]. In these triangles,
the differences are represented by two features of compact/diffuse
and grave/acute. Figure 2 shows his geometrical structure of French
vowels and semi-vowels[12], where the phonic differences are repre-
sented by the features. Although the phoneme was initially defined
only by its feature-based interrelations to the others, it seems that
Jakobson eventually defined the individual phonemes absolutely and
independently as bundles of features. Then, he proposed the famous
mapping table between the features and the phonemes. We consider
that these two definitions of the phonemes, relative and absolute,
have significant difference and that it is obvious that the original
definition corresponds directly to Saussure’s claims of the language.

These two definitions of the phonemes can be found in a text-
book of descriptive linguistics[13]. “A phoneme is a class of sounds
that are phonetically similar and show certain characteristic pat-
terns of distribution in the language or dialect under consideration.”
This is the absolute and independent definition of the phonemes
and it is clear that this definition brought about HMMs. Many of
/a/ sounds from multiple speakers can create a speaker-independent
HMM of /a/. However, it represents only the averaged distribution
of /a/ sounds and it can easily have outlier speakers acoustically. For
them, speaker adaptation techniques are often required. Speaker-
independent models require speaker adaptation techniques, which
means that the models are not really speaker-independent.

Fig. 1. Consonant and vowel triangles proposed by Jakobson



Fig. 2. Jakobson’s structure of the French vowels and semi-vowels

“A phoneme is one element in the sound system of a language
having a characteristic set of interrelations with each of the other
elements in that system.” This is the interrelational or contrastive
definition of the phonemes, which corresponds better to Saussure’s
claim. In the textbook, some additional properties of the phonemes
are described. “The phoneme cannot be acoustically defined.” “The
phonemes of a language are a set of abstractions.” In this definition,
the averaged distribution of /a/ may make no sense. Two speakers
offer two different acoustic realizations of /a/ and it is meaningless
to consider which of the two samples is closer to the ideal instance of
/a/. Both the samples are ideal equally no matter how large acoustic
differences they show. In this definition, what to model acoustically
is not the phonic entities but the phonic differences or contrasts be-
cause linguists consider that they are invariant with speakers.

Let us consider the external geometrical structure of speech,
similar to Jakobson’s structure in Figure 2, in a cepstrum space. It
should be noted that, in this study, the phonic differences are treated
not qualitatively as features but quantitatively. If a phone is repre-
sented as a point in the space, n phones naturally form an n-point
structure. A 3-point structure, triangle, can be determined fully and
uniquely by fixing length of all the three lines. Similarly, an n-
point structure can be determined uniquely by fixing length of all the
nC2 lines including the diagonal lines. All the nC2 differences can
be represented compactly as n×n distance matrix of the n points.
To sum up, a geometrical structure as in Figure 2 is mathematically
equivalent to its distance matrix. Then, we consider that the distance
matrix of speech events can be the simplest mathematical interpre-
tation of Saussure’s claim of “system of only phonic differences.”
Linguists claim that the external structure is invariant with speakers.
In the following sections, after a mathematical model to represent
acoustic distortions caused by the non-linguistic factors is devised, it
is examined whether the external structure can be observed as invari-
ant with the non-linguistic factors, i.e., whether the distance matrix
is invariant mathematically with these factors.

3. INEVITABLE NON-LINGUISTIC FACTORS

In speech recognition, three types of distortions or noises, additive,
multiplicative (convolutional), and linear transformational, are often
discussed. Background noise and music are typical examples of ad-
ditive noise, often observed in actual environments. But this is not
inevitable because a speaker can turn off a radio or move to a quiet
room if needed. In this paper, this type of distortion is ignored.

The distortions caused by microphones, rooms, and lines are
typical examples of multiplicative distortion. GMM-based model-
ing of speaker identity assumes that a part of the individuality is also
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Fig. 3. Spectrum distortions caused by Ai and bi

regarded as this type. This distortion is inevitable because speech
has to be produced by a certain human, transmitted by a certain me-
dia, and recorded by a certain acoustic device. If a speech event is
represented by cepstrum vector c, the distortion of this type can be
modeled as addition of vector b; c′=c+b.

Two speakers have different vocal tract shapes and two listeners
have different hearing characteristics. Mel or Bark scaling is just
the average pattern of the hearing characteristics. These are typical
examples of linear transformational distortion, which is naturally in-
evitable. Vocal tract length difference causes formant shifts, which
are often modeled as frequency warping of the spectrum. Hearing
characteristics difference causes another frequency warping of the
spectrum. Any monotonous frequency warping of the spectrum can
be well approximated as multiplication of matrix A[14]; c′=Ac.

Although various distortion sources are found in speech commu-
nication, the total distortion due to the inevitable sources, Ai and bi,
is simply modeled as c′=Ac+b, i.e., affine transformation. Figure 3
schematizes the spectrum distortions due to Ai and bi, which are
horizontal and vertical ones, respectively. In MLLR adaptation, mul-
tiple matrices are used for a mixture-based bottom-up clustering of
triphones[15]. Triphones are trained with many speakers who read
different sentences. This implies that different parts of the triphones
take on different speaker individuality and this is a main reason why
multiple matrices are required. In MLLR adaptation in HMM-based
speech synthesis, i.e., adaptation from one speaker to another, a
smaller number of matrices can be used effectively. However, a sin-
gle and global matrix may not be so effective to model the entire
non-linguistic factors. Some preprocessing will be examined later.

The static non-linguistic factors are modeled simply as a global
affine transformation. It is well-known that an affine transforma-
tion functions as operator of rotation, shift, contraction, expansion,
shear, or their combination of a geometrical structure. Among many
kinds of affine transformations, rotation and shift are the only trans-
formations which don’t change the shape of the structure. If the
non-linguistic factors can be modeled as the special forms of affine
transformation, i.e., rotation and/or shift, then, it can be said that the
factors cannot change the structure. However, it is shown in [14] that
this assumption is not valid because the non-linguistic factors need
more general forms of affine transformation. This mathematically
means that the shape of an n-point structure in a cepstrum space has
to be distorted and variant by the non-linguistic factors. We wonder
whether Jakobson’s structure is an illusion mathematically. Or, is it
possible to make always-variant structures invariant?

4. STRUCTURAL REPRESENTATION OF SPEECH

The solution of this problem is given by using a kind of mathematical
trick, that is the use of an noneuclidean (distorted) space so that the
structure can become invariant. We introduce the following theorem.



Fig. 4. The invariant underlying structure of a data set
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THEOREM OF THE INVARIANT STRUCTURE
N events are observed and every one is described not as point
but as distribution. Distance between any two events is calculated
as Bhattacharyya or Kullback-Leibler distance, which is based on
information theory. A single and common affine transformation
cannot change the distance matrix, i.e., the structure.

Distribution means a Gaussian mixture. Bhattacharyya distance was
adopted here because it can be interpreted as normalized cross cor-
relation between two PDFs p1(x) and p2(x).

BD(p1(x), p2(x)) = − ln

Z ∞

−∞

p

p1(x)p2(x)dx, (1)

where 0.0 ≤
R ∞
−∞

p

p1(x)p2(x)dx ≤ 1.0 and the name of unit of
BD is bit because BD can be regarded as self-information. If the two
distributions are Gaussian, BD is formulated as follows.
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µ12 is µ1−µ2. Figure 4 shows three structures of five distributions.
Any two of the three can be converted to each other by multiplying
matrix A, meaning that the three structures (matrices) are completely
the same. Why this happens? Because BD calculation distorts the
space where the distributions are observed. The first term of the
righthand side of Equation 2 is in the form of Mahalanobis distance
where the covariance matrix is calculated by averaging Σ1 and Σ2.
In this term, the unit distance changes according to direction of µ12,
as shown in Figure 5. The unit distance with µ12 lying in the direc-
tion of A is longer than that in the direction of B. The structural in-
variance is obtained with a good combination of a distribution func-
tion representing an event, a distance function between two events,
and a function to transform the entire events. Other distributions
than Gaussians may show the structural invariance with adequate
distance and transformation functions. This distorted space can be
analyzed with differential geometry. If distribution is characterized
by p(x)=p(µ, σ)=N (µ, σ) then, d(BD) is obtained as follows.

BD(µ1, σ1, µ2, σ2) =
1
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d(BD) = Mµµdµ2 + 2Mµσdµdσ + Mσσdσ2 (4)

Mµσ =
1

8
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p
∂ ln p
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∂ ln p
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dx (5)

M is a metric and the metric obtained here is called Fisher metric,
indicating that the distorted space obtained is a manifold defined in
information geometry[16]. Existence of the invariant structure was
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verified by a distorted (noneuclidean) space. Mathematically speak-
ing, what is discussed here is similar to Einstein’s theory of general
relativity, where any massive object can distort spacetime around it
and the interaction between the spacetime distortions by two objects
causes gravity between the two. The metric of the distorted space-
time is calculated by solving the well-known Einstein’s equations.

The structural representation can be applied to a single utter-
ance, shown in Figure 6. After a given utterance is converted into a
sequence of distributions, only the interrelations (phonic differences)
of any two of all the temporally-distant distributions are calculated
to form a structure (distance matrix). This is called the acoustic uni-
versal structure in speech[1, 2]. After that, absolute properties of
the individual events such as spectrums and formants are discarded
completely. Since matrix A cannot change the distance matrix, any
A is interpreted as rotation. For example, human growth is regarded
as very slow rotation of the structure, which takes about 15 years.

Acoustic matching between two n-point structures can be done
by shifting (b) and rotating (A) a structure so that the two can be
overlapped the best, shown in Figure 7. Suppose that there are two
n-point structures in an N -dimensional euclidean space, where a
matrix representing rotation only is an orthogonal matrix. Here, the
minimum of the total distance of the corresponding two points after
the adaptation with respect to A and b is formulated as

Pn
i=1 OPi

2
+ OQi

2 − 2
PN

i=1

√
αi, (6)

where O is the common gravity center of the two structures P and
Q. αi is the i-th eigen value of N×N matrix StTT tS. S and T

are (O⃗P 1, ..., O⃗P n) and (O⃗Q1, ..., O⃗Qn) respectively. It should be
noted that the acoustic matching score after the adaptation can be
calculated only with two distance matrices, without explicit calcula-
tion of A and b. Equation 6 is considered as mathematical shortcut
to calculate the acoustic matching score. This implies possibility of
speech recognition where only the phonic differences are used. But
Equation 6 cannot be adopted directly because triangular inequality
is not always satisfied in the distorted space. Some approximate so-
lution only with the two distance matrices has to be prepared. In



Fig. 8. Visual illusion invoked by Gestalt perception

[1], it was experimentally shown that the minimum of the total dis-
tance after the adaptation in Figure 7 is proportional to euclidean
distance between the two distance matrices, where the upper-triangle
elements form a vector. This approximation will be used hereafter.

5. PSYCHOLOGICAL INTERPRETATION OF
THE STRUCTURAL REPRESENTATION OF SPEECH

When people hear music, many of them cannot identify its individual
notes. But it is possible to identify the name of the music. Why this
happens? This is because music perception is done by perceiving
the relative patterns of the notes, not the individual notes separately.
It is known that transposition of music cannot affect the identity of
the music and the same melody is perceived after the transposition.
To explain this effect, Christian von Ehrenfels introduced Gestalt as
the holistic quality invariant to transposition[17]. After that, Gestalt
came to be used widely to explain various perceptual phenomena.
Another famous example of Gestalt perception is visual illusion,
shown in Figure 8. The two central circles are physically the same in
size but, with some figures around them, they come to look different
in size. The visual illusion inevitably happens to humans because
visual perception is done by capturing not the individual figures sep-
arately but the holistic quality generated by the interrelations among
all the figures. One of the major theories to explain the visual illu-
sion assumes that humans distort the space in their brains where the
objects are observed[18]. In this theory, the distorted space is ana-
lyzed using Einstein’s equations directly and Schwarzschild’s solu-
tion is used to derive the distorted space. It is known that Ehrenfels
was influenced by Ernst Mach, who claimed that the elements can
become sensations only in the connection and relation and that the
physiological space is non-homogeneous (noneuclidean). It is also
well-known in science history that Mach influenced Einstein greatly.

The proposed method extracts all the interrelations from speech
events in a noneuclidean space. Then, the structurally-represented
utterance can become invariant with the static and inevitable non-
linguistic factors. This mathematical fact led us to regard a structurally-
represented utterance as speech Gestalt. It is interesting that Trubet-
zkoy, a senior colleague of Jakobson’s, claimed the following[19].
“The phonemes should not be considered as building blocks out of
which individual words are assembled. Each word is a phonic en-
tity, a Gestalt, and is also recognized as such by the hearer.” “As a
Gestalt, each word always contains something more than the sum of
its constituents (phonemes), namely, the principle of unity that holds
the phoneme sequence together and lends individuality to a word.
Yet in contrast with the individual phonemes, it is not possible to
localize this principle of unity within the word entity.” We interpret
that Saussure’s system of the phonic differences, Jakobson’s geomet-
rical structure, and Trubetzkoy’s principle of unity indicate the same
mathematical entity. The questions are whether a spoken word can
be identified correctly only with its phonic differences, and whether
human hearers use the differences in speech communication. Some
experimental results will be shown in the following section.

If readers have good knowledge both on linguistics and physics,
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they should know the philosophical similarity between Saussure’s
theory and Einstein’s one. The both theories claim that an element
cannot have the absolute value by itself. Saussure found this philos-
ophy in language and Einstein found it in spacetime. As told above,
Ehrenfels found this philosophy in mind. Jakobson pointed out the
philosophical similarity between Saussure and Einstein [20] and this
paper points out the mathematical similarity between them.

6. SOME EXPERIMENTAL FACTS

6.1. Automatic recognition of 5-vowel utterances

The first author applied the new representation to speech recognition[4].
To discuss the fundamental characteristics of the method, a very sim-
ple recognition task was adopted; recognition of isolated vowel se-
quences. Since the non-linguistic factors were expected to be sup-
pressed, only a single speaker’s speech samples were used to train
the acoustic models. It should be noted that the absolute acoustic
entities of speech, spectrum envelopes, were not directly used at all.

The sequence was V1-V2-V3-V4-V5, where Vi ̸=Vj . Since Japanese
has five vowels, the vocabulary size is 120. After cepstrum calcula-
tion, each vowel was represented as distribution by using its central
portion only (140ms). As shown in Figure 9, a structure was com-
posed of the five distributions and a structure vector was obtained to
represent the input utterance. As described in Section 4, euclidean
distance between two structure vectors can approximate the acoustic
matching score after the adaptation between the two utterances.

From the training speaker, a structural and statistical model was
trained for each of the 120 words. An input utterance, structurally
represented, was matched with these models. 4 male and 4 female
speakers were used as testing speakers. The total number of test-
ing samples of the 5-vowel utterances was 25,000. Since the non-
linguistic factors were simply modeled as a global affine transfor-
mation, the effectiveness was considered to be restricted. A previous
study showed that speaker differences are much likely to be observed
in upper bands of spectrum[21] and, following this finding, lowpass
filtering (LPF) was examined as preprocessing. Figure 10 shows
two kinds of spectrum of /a/; clean samples of 5 speakers and those
with LPF. The upper portions are modified to show little differences



Table 1. Recognition rates as function of cut-off frequencies
cut-off [kHz] 8.0 4.0 3.5 3.0 2.5 2.0
accuracy [%] 43.0 62.8 81.8 96.9 80.0 100.0

Table 2. Recognition rates of the three methods [%]
methods full-band telephone band 2kHz LPF

HMM(260) 100.0 93.8 72.3
HMM(4,130) 100.0 95.2 87.5
Proposed(1) 100.0 100.0 100.0

among the speakers. Table 1 shows the results. With 2kHz cut-off
LPF, the recognition performance was raised up to 100%. Since the
LPF speech showed the perfect performance, the proposed method
was expected to show higher robustness than the conventional meth-
ods. This is because, most of the cases, input speech of different
acoustic conditions is able to be converted to the LPF speech with
2kHz cut-off. For comparison, two sets of HMMs were prepared,
4,130-speaker and 260-speaker gender-independent models, both of
which were trained with full-band MFCC and CMN for acoustic
mismatch cancellation. The network grammar allowing only the 120
words was used as language model. Table 2 shows the performance
for full-band, telephone band, and 2kHz LPF speech. The parenthe-
sized numbers are those of training speakers. 2kHz LPF was always
done as preprocessing in the proposed method. It is clearly shown
that the proposed method outperforms the conventional HMMs with
CMN. Another experiment was carried out. The HMMs trained only
with 2kHz LPF speech of the training speaker showed 88.8% perfor-
mance for 2kHz LPF speech of the testing speakers. This indicates
that 2kHz LPF cannot delete the non-linguistic factors completely
and the remaining factors can be removed by structuralization. The
performance of the proposed method with noisy speech is described
in detail in [4], to which interested readers should refer.

It is very interesting that the 2kHz LPF speech is acoustically
similar to the first speech; the speech of the mother which an unborn
baby listens to continually for several months before birth. In [22],
it is shown that, up to 2kHz, there is almost no acoustic difference
between two kinds of vowel samples; one recorded in front of the
mouth and the other recorded in water in the stomach.

Although the adopted task is very primitive and some problems
about continuous speech with consonant sounds remain to be solved,
we consider that the potential of the proposed representation is ex-
tremely high and that Saussure’s claim that a word can be recognized
only with its phonic differences was experimentally verified.

6.2. Perception of speaker-variable speech

If an utterance is structuralized, the non-linguistic factors can hardly
be seen there. However, it should be noted that the universal acous-
tic structure is based on a premise that these factors are static. Hu-
man speakers cannot change their identity while speaking but tech-
nologies can do that. Speaker-variable speech, whose speaker iden-
tity changes along the time axis, can be generated by HMM-based
speech synthesis. It is obvious that the phonic difference between
two speech events will take an abnormal value if the events have
different speaker identity. Can a listener extract linguistic informa-
tion correctly from the speaker-variable speech? If he perceives it
in a piecewise manner, the extraction will be done normally. If he
perceives it holistically as Gestalt, the extraction will be damaged to
some extent. A speech recognizer with speaker-independent HMMs
will show the constant performance irrespective of the speaker change.

HMMs of 7 male speakers were trained separately for speech
synthesis. Meaningless sequences of 8 morae were synthesized as
stimuli. 6 different intervals of the speaker change were realized; 8,
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4, 2, 1 mora(e), a phone, and a state. If the speaker changes state
by state, the change occurs 5 times in a phone. The most frequent
change was expected to be impossible to perceive because spectrum
smoothing is done when generating a spectrum sequence. As for
prosody generation, a fixed F0 pattern was always assigned to the
sequences, which was LHHHLLLL (type-4 word accent). 25 se-
quences of randomly selected 8 morae were prepared for each in-
terval. The so-called tokushuhaku, such as a choked sound and a
syllabic nasal, were ignored. The total number of different morae
used in the experiment, i.e., mora-based perplexity, was 43.

Three types of subjects joined the experiment; 5 students of a
speech lab., 3 students of a law school, who never joined a listen-
ing test, and a speech recognizer with speaker-independent HMMs.
Although the number of human subjects is small, that of morae pre-
sented to a subject at each interval of the speaker change is 200 and
statistical analysis is possible enough separately for each subject.

Each stimulus was presented twice and the subjects were asked
to fill in the 8 blanks on the web. Absence of the tokushuhaku was
known to the subjects in advance. After the listening test, each se-
quence was recognized by HVite. The network grammar was used
allowing only the 8-mora sequences with the tokushuhaku excluded.

Figures 11 and 12 show results of the law students and those of
the lab. students. X-axis and Y-axis represent the speaker change in-
terval and the averaged number of morae correctly recognized. Full
black rectangles are the performance of the speech recognizer. Sig-
nificant difference of the machine performance was not found be-
tween any two cases of the speaker change interval. However, the
identification performance is very different between the two student
groups. The law school students are always worse than the recog-
nizer but the speech lab. students are better than the recognizer in
most cases. This is considered due to difference of familiarity with
synthetic speech and this fact is not focused on in this paper. What is
focused on is difference between the two student groups in the per-
formance change along with decrease of the speaker change interval.

The performance of the law students is degraded with decrease



of the change interval. At the shortest interval, as expected, the per-
formance was drastically increased. Except for this increase, sig-
nificant difference of the performance (<10%) was found at 8m-2m
(p=7.54%), 8m-1m (p=3.56%), and 8m-1p (p=5.46%) of subject-
1 and 8m-1m (p=6.04%), 8m-1p (p=1.58%), and 2m-1p (p=5.81%)
of subject-2. m and p represent mora and phone, respectively. The
performance of the lab. students is not degraded except for subject-8.
Significant differences are found only at 8m-1m (p=1.79%), 4m-2m
(p=5.67%), and 4m-1m (p=0.35%) of subject-8.

Both the figures imply that the lab. students listened to the stim-
uli piecewise and that the law students captured the holistic quality
of each stimulus, which is composed of the phonic differences. Al-
though a quantitative analysis was not done yet, we consider that
some speaker changes were perceived as phoneme changes. These
effects were much to be expected because speakers and phonemes
are represented by the same acoustic feature, i.e., spectrum envelopes.

7. FINDINGS IN STUDIES OF THE HANDICAPPED

Trubetzkoy claimed that a hearer recognizes an input word as Gestalt.
We know that some people have great difficulty in perceiving things
as Gestalt. They are much less likely to experience visual illusion,
much more likely to have absolute pitch, much less likely to show
the McGurk effect, much better at memorizing semantically unre-
lated words such as birth dates and telephone numbers. They are
much better at processing sensory elements but much worse at relat-
ing an element to others to capture the holistic and coherent quality.
They are autistics. Uta Frith claims that autism consists of a lack
of drive towards central coherence and explains that autistics live in
a fragmented world[23]. It is also known that speech is the most
difficult media for them although it is the easiest for the others.

In the conventional acoustic modeling paradigm, when the lan-
guage has N phonemes, the entire acoustic space is fragmented into
N3 sub-spaces and the observations in each sub-space are modeled
basically independently of those in the others, called triphones. In
some studies[6, 7, 8, 9], even smaller fragments or units are exam-
ined, called features. We cannot help considering strategic similarity
of processing speech between autistics and the current speech recog-
nizers, namely, the reductionism. It is well-known that, in the 90’s,
AI researchers found the robots they built had behavioral similarity
to autistic children[24]. Both were extremely weak at small environ-
mental changes, known as the frame problem. Some AI researchers
and autism therapists are collaborating together[24]. The current
recognizers are also weak at small environmental changes such as
speaker change to children. Speech engineers may have to face the
same problem that AI researchers had and still have. We don’t deny
the conventional methods because humans can identify an isolated
phone. We consider that the conventional methods have focused on
just one aspect of speech and that the other aspect should be investi-
gated intensively and both the paradigms should be integrated.

8. CONCLUSIONS

This paper proposed a novel method of acoustic modeling of speech
and its theoretical backgrounds were described in detail from lin-
guistic, psychological, acoustic, and mathematical points of view.
Linguistically speaking, however, we consider that the proposed method
is the most classical approach of acoustic modeling of speech. The
proposed method is directly based on the original definition of the
phonemes, namely, Saussure’s system of only the phonic differences,
Jakobson’s geometrical structure, and Trubetzkoy’s principle of unity.

Some experimental results showed the high potential of the proposed
method. Similarity between autistics and speech recognizers was
also discussed. Speech scientists and engineers may have to revisit
the classical theories of linguistics, where the word was not treated as
just a temporal string of some linguistic and independent elements.

Some readers may have noticed that the proposed method re-
gards speech as music because it captures only the relative patterns.
The underlying equality of speech and music is discussed in [25].
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