
 

 

Abstract— In this paper, a localization based approach of 

audio signal separation from binary mixtures is carried out. The 

audio sources are localized in the spatial domain (azimuth plane) 

using the delay and amplitude variation cues between two 

microphones’ signals. A coherence based technique is 

introduced here to localize the audio sources in adverse 

acoustical environment. The mixture signals are decomposed 

into a desired number of sub-bands with empirical mode 

decomposition (EMD) which is a data adaptive filtering scheme 

suitable for nonlinear and non-stationary signals. Data 

independent minimum variance beamforming is employed to 

separate the component sources in underdetermined condition 

(more sources than sensors). The experimental results of the 

proposed algorithm show noticeable separation efficiency. It is 

also found that the sub-band implementation improves the 

performance compared with and full-band approach. 
 

Index Terms— Empirical mode decomposition, signal 

coherence, source localization, spatial beamforming.  

I. INTRODUCTION 

HE separation of mixed audio signals has many potential 

applications including robust speech recognition, music 

transcription, speaker separation from recorded meeting and 

video conferencing, robotics. The present research trend is to 

reduce the number of mixture (microphones) signals. The 

separation of audio sources in underdetermined case remains 

problematic. The localization based approach is proposed in 

the paper to separate the audio sources from binary mixtures. 

Two cues, the time difference (TD) and the intensity 

difference (ID) between two microphones are employed to 

localize and separate concurrent audio signals from binary 

mixtures. The effects of TD and ID depend on the signal 

frequency as well as the spacing between the microphones. 

The source localization ability is dominated by TD and ID in 

lower and higher frequency ranges respectively. The TD is 

gradually substituted by ID with increasing of frequency.    

The models of localization based audio source separation 

form binary mixtures have been proposed in [1, 2, 3, 4]. In all 

the algorithms the mixtures are produced by using measured 

head related transfer function (HRTF). The advantage of 

localization based separation is that the separation efficiency 

is independent of the content of the individual signals. The 

performance only depends on the spatial location of the 

sources. In [1] the azimuth of the source is considered as the 

direction of arrival (DOA) and the location dependent 

weighted filter is used in separation. In [2], only one source 

has been taken into account to be segregated from interfering 

sound. A supervised learning based ratio mask is used in 

separation and hence, the performance depends on priori 

knowledge about the sources.  In [3], the authors only 

consider two sources in separation whereas the separation of 

source in underdetermined condition is a challenging task. 

Visual cue is employed in [4] as the primary support of source 

localization.  

This paper presents a technique to detect, discriminate and 

separate individual audio sources from two mixtures using the 

binaural localization cues and adaptive beamforming. In a 

multi-source audio environment, the localization ability may 

degrade due to the interference, diffraction and resonance 

effects of the signals around the region close to the pair of 

microphones [5]. To reduce such unwanted effects in 

localization, the coherent frequency components of the mixed 

signals are used to compute the localization cues (TD and ID). 

The TD is represented here as the phase difference (PD). The 

multi-band approach of adaptive beamforming scheme is 

applied to segregate the localized source signals. The 

multi-band decomposition of the mixed signals is performed 

by using empirical mode decomposition (EMD) [6]. The gain 

factor of the beamformer is controlled by the location based 

parameters. 

Regarding the arrangement of this paper, source 

localization method is illustrated in section two, the 

multi-band implementation with EMD is presented in section 

three and sub-band based beamforming approach is described 

in section four. The experimental results and discussion are 

presented in section five and finally section six includes some 

concluding remarks.  

II. SPATIAL LOCALIZATION OF THE SOURCES 

The proposed algorithm mainly consists of two steps: to 

localize the sources in terms of azimuth angle and to separate 

the localized sources by employing sub-band beamforming 

method. A microphone pair is used to capture the multi source 

audio signals. A priori map of PD and ID between the 

microphones are computed in an anechoic room based on 

different azimuth locations. The azimuth localization cue is 

defined by combining the PD and ID for individual azimuth 

locations. The localization is performed by comparing priori 

map with the azimuth cue calculated from the mixed signals.  

All the interfering sources sometimes introduce an error in 

localization by producing a source location neither the real 

one [7]. In this method, the spectra of coherent frequency are 

used to compute the localization cues (IP and ID) to resolve 

such error. The coherence between two mixed signals x1(t) 

and x2(t) is defined as: 
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where P12(ω) is the cross power spectra of x1(t) and x2(t), 

P1(ω) and P2(ω) are the power spectra of x1(t) and x2(t) 

respectively. The signals are normalized prior to computing 

the coherence function. It is noted that ζ12(ω)∈(0,1). The 

frequency component with ζ12(ω)>0.9 is termed here as 

coherent frequencies and denoted byωc.    

Consider X1(ω) and X2(ω) are the short time Fourier 

spectrum (512 point FFT, 30ms Hamming window with 20ms 

overlapping) of first and second microphones’ mixtures x1(t) 

and x2(t) respectively. Then PD and ID can be calculated at 

the coherent frequency ωc as: 
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where )(1 cωφ , )(2 cωφ are the unwrapped phase vectors of X1(ω) 

and X2(ω) respectively at coherent frequency ωc.  

The effects of PD and ID in source localization task are not 

linear with frequency. It depends also on the spacing between 

the microphones. In this experiment the spacing is 10cm. At 

low frequencies (<1.7 kHz), there is little ID information, but 

the PD is the dominant cue of localization [2]. At high 

frequencies (>1.7 kHz), there is ambiguity in PD, and the ID 

resolves such localization ambiguity. The proposed combined 

azimuth cue is defined as: 
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where )( cp ωα  and )( cωακ
 are frequency dependent 

normalization factors of )( cωρ  and )( cωκ  respectively. Since 

PD and ID are measured in different scales, it is required to 

normalize prior to combine them. )( cωβ  is the forgetting 

factor of azimuth cue. )( cωβ  =0 up to 1.5 kHz, 1 for 

frequency greater than 2.0 kHz and it is increased gradually 

between the frequency range 1.5 kHz to 2.0 kHz. A priori map 

),( ϕωχ c
 of the proposed azimuth cue )( ca ωρκ

 is computed 

using the transfer functions between the microphones and the 

source placed at individual azimuth locations.  

The DOA information of the source placed at azimuth ϕ is 

calculated as: 
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where ηe(ωc) stands for weighting factor based  on energy. 

The energy term of the mixture spectrogram is normalized. 

The function ),( ϕωψ c
 represents how close the derived 

azimuth cue )( ca ωρκ
 to the priori map ),( ϕωχ c

 and it is 

expressed as: 

 ))(),(exp(),( ccc a ωϕωχϕωψ ρκ−−=      (6) 

The resultant DOA function δa(ϕ) produces the peaks at 

some azimuth angle ϕ representing the source azimuth 

positions. The DOA represented by the function δa(ϕ) of the 

sources placed at azimuth angles 20
o
, 50

o
 and 110

o
 is shown in 

Fig 1. It shows a comparison of azimuth localization with and 

without coherent frequency. It is observed that the use of 

coherent frequencies performs better localization.   

0

2

4

6

8

10

0 20 40 60 80 100 120
Azimuth Angle

A
zi

m
u

th
 c

u
e

With Coherence
Without Coherenece

 

Fig 1: Three source localization at 20
o
, 50

o
 and 110

o
 azimuths 

III. MULTI-BAND DECOMPOSITION WITH EMD 

The multi-band representation scheme of the mixture 

signals is implemented by using empirical mode 

decomposition (EMD). It is specifically designed to analyze 

the non-linear and non-stationary properties of a time domain 

signals [6]. The principle of the EMD technique is to 

decompose any signal into a sum of the oscillatory 

components called intrinsic mode functions (IMFs). Each 

IMF satisfies two conditions: (i) in the whole data set the 

number of extrema and the number of zero crossing must be 

same or differ at most by one, (ii) at any point, the mean value 

of the envelope defined by the local maxima and the envelope 

defined by the local minima is zero. For any time series s(t) 

the EMD algorithm can be expressed as follows: 
 

a) Initialize the residual r0(t)=s(t) and index of IMF j=1 

b) (i) set h0=rj-1 and i=1 

   (ii) Identify the extrema (minima and maxima) of hi-1(t) 

   (iii) Compute upper and lower envelopes ui-1(t) and li-1(t) 

   (iv) Find mean envelope µi-1(t)=[ui-1(t)+li-1(t)]/2 

   (v) Update hi(t)=hi-1(t)- µi-1(t) and i=i+1 

   (vi) Repeat steps (ii)-(v) until hi(t) being an IMF. If so, 

the j
th

 IMF mj(t)=hi(t) 

c) Update residual rj(t)=rj-1(t)-mj(t) 

d) Repeat steps (b) with the index of IMF j=j+1 
 

At the end of the decomposition the signal s(t) is 

represented as:  

∑
=
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where n is the number of IMF components and rn is the final 

residue. Another way to explain how EMD works is that it 

filters the highest frequency oscillation that remains in the 

signal. Thus locally, each IMF contains lower frequency 

oscillation than the one extracted just before. 

The IMF components are interpreted as the basis vectors 

representing the data. The EMD is also interpreted as dyadic 

filer-bank [8]. In this application, the IMFs are used in 

sub-band filtering. The multi-band decomposition is 

implemented in time domain by grouping the IMFs in order. 

Each group of IMFs corresponds a band passed signal. 

Conventionally, the filtering is carried out in frequency 

domain. Any frequency domain (e.g. Fourier) filtering 

method applied on nonlinear and non-stationary signal (e.g. 

speech) eliminates some of the harmonics, which will cause 

the deformation of the wave forms of the fundamental modes 

[9]. The signal of b
th

 band can be represented as the 
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summation of the selected IMF components. Then sb(t) can be 

defined as: 

)()( tmts
q

pj
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=            (8) 

where the indices p and q depend on the number of desired 

sub-bands and fractional energy of the individual IMF. The 

advantage of this time-space filtering is that the resulting band 

passed signals preserve the full nonlinearity and 

non-stationary in physical space. An audio stream (mixture of 

speech and flute sound) and its three-band decomposition 

using EMD are shown in Fig 2. It should be noted that the the 

original signal can be reconstructed by summing up the 

sub-band signals with a negligible error (of the order 10
-14

). 

 

 

Fig 2: Three band decomposition of audio mixture 

IV. SEPARATION BY SUB-BAND BEAMFORMING  

The beamformer performs as a spatial filtering to separate 

signals that may have overlapping frequency content but 

originated from different spatial locations [10]. A Sub-band 

implementation of linearly constrained minimum variance 

beamforming (LCMVB) is applied here with location based 

constrained. It passes the signal of desired location with 

specified gain factor while minimizing the contribution to the 

output due to interfering signals and noise arriving from other 

directions [11]. The major problem of beamforming is spatial 

aliasing which occurs for v≤)2/( ωλ , where v is the distance 

between the microphones λω is the signal wavelength [12]. 

The spatial aliasing problem is resolved here by using a 

function ξ[κ(ω)] derived from the intensity difference 

between the sensors. Then the difference term 

)]()([)( 21 ωφωφωφ −=∆  is represented as k±=∆ ]/[)( πρωφ ω
where 

k=0, 1, 2… and ),0( πρω ∈ .  

Let ],[ 21
∗∗= wwwH be the sensor weight vector (superscript H 

represents the Hermitian transpose). Hjed ],1[)( )(2 ϕπωτϕ =  is 

the sensor response vector when the source is placed at the 

azimuth angle ϕ. One sensor is considered as the reference 

and τ(ϕ) is the time delay (corresponding to ρω) between the 

sensors and it is numerically computed from the location 

based transfer functions. The beamformer response 

gdwH =)(ϕ  tells that at a specific temporal frequency ω, the 

signal of the source located at azimuth ϕ is passed to the 

output with gain g. Minimization of contribution to the output 

from the interference is accomplished by choosing the 

weights to minimize the output variance wRwyE x
H=}|{| 2 . The 

LCMVB problem of choosing the weights is thus written 

  wRw x
H

w
min  subject to gwd

H =)(ϕ        (9) 

The method of Lagrange multipliers can be used to solve 

Eq. (9) resulting in 
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where }{ H
x XXER = is the data covariance matrix and 
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where )()(

1 ωξ
X and )()(

2 ωξ
X  represent the phase-modified 

version by applying resolving function ξ[κ(ω)] between the 

original mixture spectra X1(ω) and X2(ω) respectively. The 

single linear constraint in Eq. (9) can easily be generalized for 

multiple constraints as: 
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The Eq. (12) tells that it is desired to pass the sources at 

azimuth angle ϕ1 and ϕ2 with specified gain g1 and g2 

respectively. It can be defined as C
H
w=G with constraint 

vector C2xL and gain vector G of length L. Then the analytical 

solution for the optimum weight is: 

GCRCCRw xx

1111 ][ −−−−=       (13) 

With L constraints there are only 2-L degree of freedom 

(DOF) to minimize the variance. In this application two 

constraints (d1 for target source and d2 for nearest interfering 

source) are used. No DOF is available and hence a data 

independent beamformer is obtained. The gain vector G is set 

to as TeG ],1[ γ−= , where γ is the Euclidian distance in 2D space 

between the target and the nearest interfering source. The 

evidence to use such constraints is that the target source is 

mostly affected by the nearest interfering signal.  

The spectrum of a source at frequency ω is separated by 

projecting original mixture spectra X1(ω) and X2(ω) on to the 

weight vector w(ω). Obtaining the entire frequency spectrum, 

inverse FFT is applied to get back the short time windowed 

portion source signal in time domain. The same process is 

repeated for the number of sources indicated by the number of 

peaks in azimuth localization space. The above described 

beamforming technique is performed on each of the 

decomposed sub-band signals. Then the overall separation of 

a source signal is performed by summing up its corresponding 

resultant sub-bands. 

V. EXPERIMENTAL RESULTS AND DISCUSSION  

The performance of the proposed algorithm is evaluated by 

separating the signals from binaural mixtures of three audio 

sources:   speech of two male persons (sm1 and sm2) and 

speech of a female (sf1). The recording is performed in an 

anechoic room. The spacing between two microphones is 

10cm placed at 1.5m distance from each source. The azimuth 

angles from 0
o
 to 180

o
 with 5

o
 resolution are selected to 

compute the priori map of azimuth cue. The sampling rate of 

all the recording was set to 16 kHz with 16-bit amplitude 

resolution.       

Three binaural mixtures (m1, m2 and m3) are produced by 
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arranging the sources at different azimuth locations as: 

m1{sm1(60
o
), sm2(100

o
), sf1(130

o
)}, m2{sm1(70

o
), 

sm2(120
o
), sf1(110

o
)}, m3{sm1(130

o
), sm2(40

o
), sf1(120

o
)}. 

The average value of short time energy ratio between original 

and separated signal is proposed as the criterion to measure 

the separation efficiency. It is termed as OSSR (original to 

separated signal ratio) and defined as: 
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where soriginal and sseparated are the original and separated signal 

respectively, w is frame length (10 ms) and T is the data 

length. In the case for zero energy in a particular window, no 

OSSR measurement is performed. If the two signals are same, 

OSSR=0 and any other value is a measure of their 

dissimilarity. Table 1 shows the average OSSR of each signal 

for every mixture. Smaller value of OSSR indicates better 

separation. It is observed that the separation efficiency is 

degraded when the apart angle between the sources become 

smaller i.e. the sources are placed closely. Also the separation 

efficiency is compared between full-band (FB) and sub-band 

(SB) approaches of spatial beamforming. It is noticed that the 

sub-band based technique produces better separation than the 

full-band approach. The comparative evaluation of the 

performances of sub-band implementation using EMD 

(SBEMD) and Fourier transform based filtering (SBFT) is also 

presented in Table 1.                

Table 1: Experimental results of our proposed algorithm   

Mixtures  OSSR of 

sm1 

OSSR of 

sm2 

OSSR of 

sf1 

SBEMD 0.132 0.145 0.201 

SBFT 0.193 0.189 0.278 

 

m1 

FB 0.341 0.312 0.395 

SBEMD 0.143 0.942 0.971 

SBFT 0.169 0.937 0.992 

 

m2 

FB 0.247 0.983 1.031 

SBEMD 0.867 0.194 0.861 

SBFT 0.891 0.219 0.872 

 

m3 

FB 0.974 0.372 0.983 

 

The evidence of improving the separation efficiency by 

using multi-band beamforming is that the band-limited or 

even the partial band-limited noise corruption does not affect 

the overall separation. The data adaptive time domain 

filtering using EMD plays a great support to the improvement 

of the separation efficiency with sub-band implementation of 

the spatial beamforming approach. The separation 

performance is better when EMD is employed to implement 

the multi-band decomposition than Fourier based method. In 

a multi-source audio environment, there occurs diffraction, 

interference etc. producing some band limited noise signals 

which affect the separation performance. Such type of noise 

does not spread over the entire frequency band during 

beamforming.  In [1], separation is performed based on PD 

and ID independently (not combined) in azimuth localization. 

They have not localized the sources in spatial domain. A 

weighting filter is proposed to separate the target source only 

based on the values of PD and ID. There is a possibility of 

introducing noises from other interfering sources.  

Usual beamforming approach to separate the sources from 

convolutive mixtures [10] used azimuth as DOA and to define 

the array response vector. The phase delay between the 

sensors is used as the main parameter to produce the response 

vectors that usually includes some ambiguous source with the 

higher frequency components of the mixture signals. The 

proposed algorithm makes use of a frequency dependent 

function to resolve such ambiguity and hence improves both 

localization and separation efficiency. 

VI. CONCLUSIONS  

We have proposed a model of localization based 

concurrent audio source separation from the binaural 

mixtures even in underdetermined situation.  A strong source 

localization method is introduced based on priori map of 

interaural cues computed from the transfer functions between 

the source locations and microphones. The improvement in 

separation performance is achieved with the proposed 

sub-band beamforming technique. Another superiority of the 

algorithm is to introduce a potential function to resolve the 

spatial aliasing that improves the robustness of localization 

and beamforming scheme. To investigate the performance of 

the proposed method in noisy environment and to implement 

the localization based separation of concurrent moving 

sources are the main consideration as future work.                 
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