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Abstract
Speech acoustics varies from speaker to speaker, microphone to
microphone, room to room, line to line, etc. Physically speak-
ing, every speech sample is distorted. Socially speaking, how-
ever, speech is the easiest communication media for humans. In
order to cope with the inevitable distortions, speech engineers
have built HMMs with speech data of hundreds or thousands of
speakers and the models are called speaker-independent mod-
els. But they often need to be adapted to the input speaker or
environment and this fact claims that the speaker-independent
models are not really speaker-independent. Recently, a novel
acoustic representation of speech was proposed, where dimen-
sions of the above distortions can hardly be seen. It discards
every acoustic substance of speech and captures only their in-
terrelations to represent speech acoustics structurally. The new
representation can be interpreted linguistically as physical im-
plementation of structural phonology and also psychologically
as speech Gestalt. In this paper, the first recognition experi-
ment was carried out to investigate the performance of the new
representation. The results showed that the new models trained
from a single speaker with no normalization can outperform the
conventional models trained from 4,130 speakers with CMN.

1. Introduction
In every speech application, engineers have built acoustic mod-
els based on phonetics, which captures acoustic substances of
the phonemes. The substances, however, inevitably vary and the
well-known “sheep and goat” problem sometimes happens. Is
there any other way to characterize the phonemes acoustically?
Apart from semantics, linguistics provides two definitions of the
phonemes[1]. 1) a phoneme is a class of phonetically-similar
sounds and 2) a phoneme is one element in the sound system
of a language having a characteristic set of interrelations with
each of the other elements in that system. It is obvious that the
first definition brought about the so-called speaker-independent
HMMs. As far as the authors know, no trials were made to im-
plement speech recognition only based on the second definition.

Recently, a novel acoustic representation of speech, which
is called the acoustic universal structure, was proposed[2]. This
structural representation discards every acoustic substance of
speech and captures only their interrelations. It can be inter-
preted linguistically as physical implementation of structural
phonology and psychologically as speech Gestalt[3]. Collection
of millions of /a/ sounds defines only the averaged distribution
of /a/ and never deletes dimensions indicating speaker informa-
tion. On the other hand, the structural representation can hardly
have dimensions for speakers, microphones, rooms, lines, etc.

This study is the first trial of applying the new representa-
tion to speech recognition. In order to discuss its fundamental
characteristics, simple vowel recognition was adopted as task.
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2. The acoustic universal structure
Inevitable acoustic distortions in speech

types of noises or distortions are frequently discussed in
h recognition; additive, multiplicative, and linear transfor-
nal. Background noise is a typical example of the additive
. But this is not inevitable because a speaker can move to
t room. Then, additive noise is ignored in this study.
coustic distortions caused by microphones, rooms, and

are examples of the multiplicative distortion. GMM-based
er modeling assumes that speaker individuality is repre-

rather well by the average pattern of log spectrum of the
dual. This indicates that a part of speaker individuality is
egarded as the multiplicative distortion. This distortion is
able because speech has to be produced by a certain hu-
nd recorded by a certain acoustic device. If a speech event
resented by cepstrum vector c, the multiplicative distortion
ition of vector b and the resulting cepstrum is c′=c+b.
wo speakers have different vocal tract shapes and two lis-

have different hearing characteristics. These are exam-
f the linear transformational distortion and naturally in-
le. Vocal tract length difference is often modeled as fre-
y warping of the log spectrum, where formant shifts are
ximated. Hearing characteristics difference is also another
ency warping of the log spectrum. Any monotonous fre-
y warping can be converted into multiplication of matrix
epstrum domain[4]. The resulting cepstrum is c′=Ac.
arious distortion sources are found in speech communica-
The total distortion due to the inevitable sources, Ai and
simply modeled as c′=Ac+b, i.e., affine transformation.

The acoustic universal structure in speech

is desired is speech representation which is invariant to
evitable acoustic distortions. This desire can be fulfilled

ructuralizing speech acoustics. Geometrically speaking,
-point structure is determined uniquely by fixing length
the M C2 lines including the diagonal ones(distance ma-
Then, a necessary and sufficient condition for the invariant
ure is that distance between any two points should not be
ed by any of a single affine transformation. This condition
thematically impossible to satisfy because affine transfor-
n is transformation which distorts a structure. How to
impossible possible? The solution can be obtained simply
torting space so that the structure can be invariant.

THEOREM OF THE INVARIANT STRUCTURE
vents are observed and every one is described not as point
s distribution. Distance between any two events is calcu-
as Bhattacharyya or Kullback-Leibler distance, which

ased on information theory. A single affine transforma-
cannot change the distance matrix, i.e., the structure.



Figure 1: Completely the same structure is found in the three.

Figure 2: Structuralization of a single utterance

Distribution means a Gaussian mixture. Bhattacharyya distance
was adopted because it can be interpreted as normalized cross
correlation between two PDFs p1(x) and p2(x).

BD(p1(x), p2(x)) = − ln

Z ∞

−∞

p
p1(x)p2(x)dx, (1)

where 0.0 ≤ R ∞
−∞

p
p1(x)p2(x)dx ≤ 1.0 and name of unit of

BD is bit because BD can be regarded as self-information. If the
two distributions follow Gaussian, BD is formulated as follows.

BD(p1(x), p2(x))

=
1

8
µT

12

„ P
1 +

P
2

2

«−1

µ12 +
1

2
ln

|(P
1 +

P
2)/2|

|P
1 |

1
2 |P

2 |
1
2

(2)

µ12 is µ1−µ2. Figure 1 shows three structures of five distri-
butions. Any two of the three structures can be converted to
one another by multiplying A. This fact indicates that the three
structures(matrices) are evaluated as completely the same. Why
this happens? Because BD calculation distorts the space where
the distributions are observed. Geometrical analysis of this dis-
torted space is done in [3] based on differential geometry. In
MLLR[5] and SAT[6], speaker differences are characterized by
affine transformations. The acoustic universal structure cannot
be changed by a global affine transformation.

2.3. Structuralization of a single utterance

The structural representation can even be applied to a single ut-
terance. Figure 2 shows the structuralization process. After the
utterance is converted into a sequence of distributions, only the
interrelations(distances) of any two of all the temporally-distant
distributions are calculated to form the structure. Acoustic sub-
stances of every event are completely discarded. In the distorted
space, since A cannot change the matrix, any A is interpreted as
rotation. Then, acoustic matching between two M -point struc-
tures can be done by shifting(b) and rotating(A) a structure so
that the two can be overlapped the best, shown in Figure 3. Sup-
pose that there are two M -point structures in an N -dimensional
euclidean space, where A allowing only rotation is an orthog-
onal matrix. In this case, the minimum of the total distance of
the corresponding two events after the adaptation of b and A is
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ure 3: Acoustic matching after shift(b) and rotation(A)

Figure 4: Jakobson’s geometrical structure
lated as

PM
i=1 OPi

2
+ OQi

2 − 2
PN

i=1

√
αi, (3)

O is the common gravity center of the two structures P
. αi is the i-th eigen value of N×N matrix StTT tS.
T are ( �OP 1, ..., �OP M ) and ( �OQ1, ..., �OQM ) respec-

. Acoustic matching score after adaptation can be calcu-
with no information of acoustic substances of the events
at without calculation of b and A. But the above quan-
nnot be used directly because triangular inequality is not
s satisfied in the distorted space. Then, approximate so-
only with the two distance matrices should be used. The

ssion implies that speech recognition may be possible with
ect use of acoustic substances of speech events.

Two kinds of interpretation of the structure[3]

ed by Saussure’s claim on language, “Language is a sys-
f conceptual differences and phonic differences,” Jackob-

alle, and others developed structural phonology which
ssed difference between two phonemes and structure com-

of all the phonemic differences by using distinctive fea-
Figure 4 shows Jakobson’s geometrical structure pro-

for French vowels. The acoustic universal structure is
omposed of differences(distances) between phonemes and
ant to affine transformation modeling the inevitable non-
stic features. Thus the acoustic universal structure can be
reted as physical implementation of structural phonology.
erception of not sensory elements but the global quality
ced through their interrelations is called Gestalt percep-
Music perception and visual illusion are considered as

amples. When people hear music, anybody can identify
of the music without identifying its individual notes. A

urally-represented word contains not the information of
nstituent phonemes but only their global quality. Once
ord becomes known by the structural matching, however,
phonemes in the word become known by referring to the

l lexicon. Some of the visual illusion, Titchener circles for
ple, can be mathematically interpreted as such that humans
t the space in their brains where the objects are found. The
tic universal structure is composed of the interrelations of
h events and it is the global quality defined in a distorted
. This fact led us to define it as speech Gestalt.



3. Toward structure-based recognition
3.1. Acoustic matching between two distance matrices

In the structure-based speech recognition, every word is repre-
sented by its speech Gestalt, which is a distance matrix mathe-
matically. If the Gestalt exists in an euclidean space, matching
score can be calculated by the formula derived in Section 2.3.
Since the Gestalt has to be in an noneuclidean space, however,
some approximate solution is required. In [7], the following
approximate equality was experimentally shown.

1

M2

X
i<j

(PiPj − QiQj)2 ≈ 1

M

X
i

(PiGP − QiGQ)2 (4)

The right term approximates average of the total distance be-
tween two corresponding phonemes of the two structures after
shift and rotation, where GP and GQ are put at a position(O)
and structure Q is rotated so that the

P |θi| (see Figure 3)
should be minimized. The left term is euclidean distance be-
tween two matrices by viewing them as vectors. Since the above
equality shows that euclidean distance between two matrices is
physically definite and clear, a statistical model of a word can
be built by using multiple utterances(structures) of the word.

3.2. Some improvements for stabler structure estimation

To implement the structure-based speech recognition, a problem
has to be solved with respect to stability of estimating distribu-
tions. A word has to be represented as structure and the struc-
ture has to be composed by distributions. This means that pa-
rameters of a distribution have to be estimated from a very small
number of frames. Although ML(Maximum Likelihood) crite-
rion is the simplest to estimate the parameters, for the above rea-
son, ML was expected to estimate the parameters rather poorly.
Therefore, besides ML criterion, MAP(Maximum a Posteriori)
criterion was investigated. As described in Section 1, the task
adopted in this study was recognition of sequences of isolated
vowels. Then, for prior knowledge, isolated vowel utterances
were collected from a single speaker. This is because, as will be
explained, the proposed acoustic models were trained only with
the speaker. Each vowel utterance was represented as a diago-
nal Gaussian distribution of cepstrum parameters. An average
vector and a diagonal covariance matrix for a new input utter-
ance was estimated by referring to [8]. The following shows the
procedure of the estimation, which is schematized in Figure 5.

µi : average vector of the i-th utterance

Σi : diagonal covariance matrix of the i-th utterance

µ0 : average of {µi} (= 1
m

Pm
i=1 µi)

Σ0 : average of {Σi} (= 1
m

Pm
i=1 Σi)

Sµ : diagonal covariance matrix of {µi}
(= 1

m

Pm
i=1(DIAG(µi − µ0))2)

Ω : = Σ0S−1
µ

µML : average vector of an input utterance

ΣML : diagonal covariance matrix of the input utterance,

where m is the total number of vowel utterances obtained for
prior knowledge and DIAG(α) is a diagonal matrix whose diag-
onal elements are those of vector α. By using the above quan-
tities, an average vector and a diagonal covariance matrix of a
new input utterance can be derived as follows:

µMAP = µ̂0 (5)

ΣMAP = B̂Â−1 (6)
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Figure 5: MAP-based estimation of the parameters

µ̂0 = Ω(Ω + nE)−1µ0 + n(Ω + nE)−1µML (7)

B̂ = B +
n

2
ΣML +

n

2
Ω(DIAG(µML − µ0))2(Ω + nE)−1 (8)

B = E (9)

Â = A +
n

2
E (10)

A = Σ−1
0 (11)

P takes a value between µ0 and µML and approaches µML

ncreases. n is the number of frames of a new input vowel
nce and it was fixed to 14 because only the central portion
ames) was used from each vowel in this study.

this study, a global affine transformation was adopted
racterize the non-linguistic features. Since this is the sim-

model, its effectiveness may be limited for speech recogni-
A previous work experimentally showed that upper bands
e 2.2kHz) of spectral envelopes of vowels carry speaker
ation[9]. Following this finding, LP filtering was intro-
as preprocessing to remove the individuality effectively.

4. Recognition of 5-vowel sequences
utterance-level structuralization can delete dimensions of
n-linguistic features completely, the authors would like to
ss the following three crazy questions.

peech recognition possible with no direct use of acoustic
stances of the individual phonemes?
speech recognition possible only with acoustic models
ucture models) of a single speaker?
peech recognition possible without any normalization or
ptation techniques?

periment was designed to answer these questions.
he recognition task is sequences of 5 isolated Japanese
ls (/a/, /i/, /u/, /e/, and /o/). Since each vowel occurs once

utterance, a word is represented by V1-V2-V3-V4-V5

Vj). The vocabulary size, PP, is 5P5=120. Isolated vow-
re recorded for training and testing the proposed structure

ls. For testing, the recording was done with 4 male and
ale adult speakers, each of whom spoke the 5 vowels 5
. Three types of LPF were done with cut-off frequencies
Hz, 4kHz and 8kHz(full-band). Cepstrum sequences were
lated from the three types of speech waveforms. Then,
strum distribution was estimated from the central por-
140msec, n=14) of each vowel based on ML or MAP.
(=55) structures of /a/-/i/-/u/-/e/-/o/ were obtained from
speaker, 25,000(=8×3,125) structures in total. Reference
xperimentally showed that size of the structure can be re-
d as articulatory effort. Thus, all of the 25,000 structures
normalized to have the same size. From the resulting dis-
matrix, only the upper triangular elements were extracted



Figure 6: 5-vowel recognition using the structure.

to define a “structure vector.” Structure vectors of other vowel
sequences, e.g. /i/-/a/-/u/-/e/-/o/, can be obtained by internally
exchanging elements of structure vectors of /a/-/i/-/u/-/e/-/o/.

For training the proposed structure models, another single
male speaker spoke the Japanese 5 vowels isolatedly and the
recording was repeated 35 times. The same LPF was done. The
35 vowel sequences were divided into 7 groups, each of which
had 5 sets of the 5 vowels. µ0 and Σ0, which are prior knowl-
edge of MAP estimation, were obtained irrespective of the kind
of vowel in the following manner. To estimate a distribution of
an input vowel of a group, samples excluding those of the group
were used and m=6×5×5. For testing, to estimate a distribu-
tion of any input, all the 7 groups of the 5 vowels were used
and m=7×5×5. Each group can produce 3,125(=55) structure
vectors of /a/-/i/-/u/-/e/-/o/ with the normalized size. Then, the
statistical structure model of /a/-/i/-/u/-/e/-/o/ was calculated as a
single multivariate Gaussian distribution using 21,875(=7×55)
structure vectors. The other 119 models were obtained by ex-
changing elements of the /a/-/i/-/u/-/e/-/o/ model. Finally, the
structure models were trained separately for three cases of LPF
cut-off frequencies. Distance between an input structure and a
structure model was calculated as Mahalanobis distance. The
overall procedure of the experiment is shown in Figure 6.

Another 5-vowel recognition experiment was done with the
conventional acoustic models. 2 kinds of speaker-independent
HMMs with CMN were prepared, 4,130-speaker tied-mixture
HMMs and 260-speaker tied-state HMMs. Parameters used for
both HMM sets were fixed to full-band MFCCs and their deriva-
tives. CFG allowing only the 120 words was used as language
model. Table 1 shows the acoustic conditions.

Table 2 shows the recognition performance of the proposed
method for three cases of training and testing conditions. Since
PP is 120, the chance level is 0.8%. The recognition accuracy
of ML and full-band is much better than the chance level but
it is still very low. The accuracy was drastically improved by
MAP and LPF. It should be noted that MAP and 2kHz cut-off
LPF gave the 100% performance. The proposed method was ex-
pected to show higher robustness than the conventional HMMs.
This is because, most of the cases, input speech of different
acoustic conditions can be converted to LPF speech with 2kHz
cut-off. Table 3 shows the comparison with the conventional
HMMs. The parenthesized numbers are those of training speak-
ers. In the proposed method, 2kHz LPF was always done as pre-
processing. In the conventional methods, however, CMN was
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Table 1: Acoustic conditions used in the experiments
ampling 16bit/16kHz
indow length / shift 25msec / 10msec

arameters for structures MCEP (α=0.55)
stimation of distributions ML or MAP
arameters for HMMs MFCC + ∆MFCC + ∆E

(with CMN)
ut off freq. of LPF 2kHz, 4kHz, or full-band

le 2: Recognition performance of the proposed method
full-band 4kHz 2kHz

ML 24.7% 47.9% 86.8%
MAP 43.0 % 62.8% 100.0%

able 3: Recognition performance of the three methods
methods full-band 4kHz 2kHz

HMM(260) 100.0% 93.8% 72.3%
HMM(4,130) 100.0% 95.2% 87.5%
Proposed(1) 100.0% 100.0% 100.0%

s done as environment normalization. The performance
HMMs degraded clearly even with CMN when training

sting conditions were mismatched. On the other hand, the
sed method achieved 100% performance for every case.
ore strict comparison, however, the HMMs trained with
peech with 2kHz cut-off should be prepared.

5. Conclusions
paper firstly introduced a novel and structural representa-
f speech acoustics, and then applied the representation to
h recognition. Although the task was simple and it was
the recognition of 5-vowel sequences, the results clearly
ed that the proposed structural models trained only with
le speaker outperformed the conventional HMMs trained
more than 4,000 speakers. The authors believe that the
r to the three crazy questions is “Definitely yes in this
c task!!” The proposed method is based on a completely

ent definition of the phoneme, and therefore, it can be inte-
effectively with the conventional HMMs. For that, some
problems have to be solved concerning distribution esti-

n from continuous speech including consonant sounds.
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