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ABSTRACT

Speech acoustics is inevitably distorted by non-linguistic features
such as vocal tract length, gender, age, microphone, room, line,
hearing characteristics, and so on. Recently, a novel acoustic rep-
resentation of speech was proposed, called the acoustic universal
structure[1, 2]. It discards all the absolute properties of speech
events and captures only their interrelations or contrasts to repre-
sent external structure of speech. Based on a mathematical model
of the non-linguistic distortions, the new representation can re-
move the inevitable distortions as cepstrum smoothing can remove
pitch information from speech. Recognition experiments using the
external structure were conducted and it was shown that the pro-
posed structure models trained from a single speaker with no nor-
malization can outperform the conventional speaker-independent
HMMs with CMN and SS. It was also found that lowpass filtering
and white noise addition as preprocessing improved the perfor-
mance because they can suppress the distortions rather well.

1. INTRODUCTION

Every speech recognition system uses acoustic models based on
phonetics, which observes acoustic events of speech directly and
absolutely. The observations, however, inevitably vary from speaker
to speaker, microphone to microphone, room to room, line to line,
and so on. Thus, the so-called speaker-independent HMMs can
even have outlier speakers easily. Switching our attension to lin-
guistics, it offers two definitions of the phonemes[3]. 1) a phoneme
is a class of sounds that are phonetically similar and show certain
characteristic patterns of distribution in the language or dialect un-
der consideration and 2) a phoneme is one element in the sound
system of a language having a characteristic set of interrelations
with each of the other elements in that system. It is clear that the
speaker-independent HMMs are based on the first definition. As
far as the authors know, speech recognizers have never been built
only based on the second definition.

Recently, a novel acoustic representation of speech was pro-
posed based only on the second definition, called the acoustic uni-
versal structure[1]. It discards all the absolute properties of speech
events and captures only their phonic differences or contrasts to
extract a geometrical structure composed of the events. Based on
distinctive features, some studies focused on internal structure of
speech[4, 5, 6]. On the other hand, the acoustic universal structure
focuses on external structure of speech, which can be interpreted
linguistically as physical implementation of structural phonology
and psychologically as speech Gestalt[2].

This study applies the external structure to speech recognition[7].
In order to discuss its fundamental characteristics, a very sim-

ple task was adopted; recognition of isolated vowel sequences in
clean, noisy, and limited band environments.

2. THE ACOUSTIC UNIVERSAL STRUCTURE

2.1. Inevitable acoustic distortions in speech

There are three types of noises or distortions; additive, multiplica-
tive and linear transformational. Background noise and music are
typical examples of additive noise, which is not inevitable because
a speaker can move to a quiet room. Then, the additive noise is not
considered in this section.

Acoustic distortions caused by microphones, rooms and lines
are examples of multiplicative distortion. A part of speaker in-
dividuality is also regarded as multiplicative distortion. This is
because GMM-based speaker modeling represents speaker indi-
viduality by the average pattern of log spectrum. This distortion is
inevitable because speech has to be produced by a certain human,
transmitted by a certain media, and recorded by a certain acoustic
device. If a speech event is represented by cepstrum vector c, the
multiplicative distortion is addition of vector b; c′=c+b.

Vocal tract length difference and hearing characteristics dif-
ference are examples of linear transformational distortion and nat-
urally inevitable. Both of them are often modeled as frequency
warping of the log spectrum. Any monotonous frequency warp-
ing can be converted into multiplication of matrix A in cepstrum
domain[8]; c′=Ac.

Various distortion sources are found in speech communica-
tion. The total distortion due to the inevitable sources is simply
modeled as c′=Ac+b, i.e., affine transformation. The authors
consider that this is the simplest mathematical model and its ef-
fectiveness may be limited. Some preprocessing will be examined
in recognition experiments.

2.2. The acoustic universal structure in speech

Figure 1 shows Jakobson’s phonological structure of French vow-
els and semi-vowels, proposed in structural phonology. He claimed
that the phonological structure is invariant with speakers. The
acoustic universal structure corresponds to physical and geometri-
cal implementation of this structure in an acoustic space. Geomet-
rically speaking, a 3-point structure, triangle, is determined fully
by fixing length of the three lines. An M -point structure is deter-
mined uniquely by fixing length of all the MC2 lines including the
diagonal ones(distance matrix). Then, a necessary and sufficient
condition for the invariant structure is that distance between any
two points should not be changed by any of a single affine trans-
formation. This condition is mathematically impossible to satisfy



Fig. 1. Jakobson’s phonological structure

Fig. 2. Completely the same structure is found in the three.

because affine transformation always distorts a structure unless it
is of a special form. How to make impossible possible? It can be
done by distorting space so that the structure can be invariant.

THEOREM OF THE INVARIANT STRUCTURE
M events are observed and every one is described not as point
but as distribution. Distance between any two events is calcu-
lated as Bhattacharyya or Kullback-Leibler distance, which are
based on information theory. A single affine transformation can-
not change the distance matrix, i.e., the structure.

Let us explain with Bhattacharyya distance(BD). If the two distri-
butions follow Gaussian, BD is formulated as follows.
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µ12 is µ1−µ2. If the common affine transformation is applied
to the two distributions, BD cannot be changed. Figure 2 shows
three structures of five distributions. Any two of the three struc-
tures can be converted to one another by multiplying A. Thus the
three structures(matrices) are evaluated as completely the same.
The structural invariance was realized because BD calculation dis-
torts the space where the distributions are observed. Geometrical
analysis of this distorted space is done in [2] based on differential
geometry. In MLLR[9] and SAT[10], speaker differences are char-
acterized by affine transformations. The acoustic universal struc-
ture cannot be changed by a global affine transformation.

2.3. Structuralization of a single utterance

The acoustic universal structure can be applied to a single utter-
ance. Figure 3 shows the structuralization process. After the ut-
terance is converted into a sequence of distributions, the interre-
lations(distances) of any two of all the temporally-distant distri-
butions are calculated to form a structure. In the distorted space,
since A cannot change the matrix, any A is interpreted as rotation
of the structure. Any b is interpreted as shift of the structure.

Sequence of spectrum slices

Sequence of cepstrum vectors

Sequence of distributions

Structuralization by interrelating temporally-distant events

Fig. 3. Structuralization of a single utterance

P1

P2

P3P4

P5

Q1

Q2

Q3
Q4

Q5

O

1

2

3
4

5

θ2

GP

GQ

Fig. 4. Acoustic matching after shift(b) and rotation(A)

Then, acoustic matching between two M -point structures can
be done by shifting(b) and rotating(A) a structure so that the two
can be overlapped the best (see Figure 4). Suppose that there
are two M -point structures in an N -dimensional euclidean space,
where A allowing only rotation is an orthogonal matrix. The min-
imum of the total distance of the corresponding two events after
the adaptation of b and A is formulated as follows.
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O is the common gravity center of the two structures P and Q.
αi is the i-th eigen value of N×N matrix StTT tS. S and T are
(O⃗P 1, ..., O⃗P M ) and (O⃗Q1, ..., O⃗QM ), respectively. It should
be noted that acoustic matching score after the adaptation can be
calculated without any absolute properties of the events and that
without calculation of b and A. The score can be calculated only
with the two distance matrices representing the two sets of speech
events structurally. However, the above quantity cannot be used
directly because triangular inequality is not always satisfied in the
distorted space. In this study, approximate solution only with the
two matrices is used and the solution will be explained below.

3. TOWARD STRUCTURE-BASED RECOGNITION

3.1. Acoustic matching between two distance matrices

In the structure-based speech recognition, acoustic matching be-
tween two structures is performed. Since the acoustic universal
structure exists in a noneuclidean space, Equation (2) cannot be
used directly. In [11], the following approximate equality was ex-
perimentally derived.
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The right term approximates the average of distances between two
corresponding phonemes of the two structures, where GP and GQ

are put at a position(O) and structure Q is rotated so that the
P

|θi|
(see Figure 4) should be minimized. The left term is euclidean dis-
tance between two matrices by viewing them as vectors. Since the
above equality shows that euclidean distance between two matri-
ces is physically definite, a statistical model of a word can be built
by using multiple utterances(structural entities) of the word.

3.2. For stabler estimation of the structures

The structure-based speech recognition presents a problem with
respect to stability of estimating distributions of speech events. Pa-
rameters of a distribution have to be estimated from a single utter-
ance, a very small number of frames. Therefore, ML(Maximum
Likelihood) criterion is expected to work rather poorly. Then,
MAP(Maximum a Posteriori) criterion was investigated. As de-
scribed in Section 1, the task adopted in this study was recognition
of sequences of isolated vowels. For prior knowledge, isolated
vowel utterances were collected from a single speaker. As will be
explained later, the proposed structure models were trained only
with the single speaker. Each vowel utterance was represented as
a diagonal Gaussian distribution of cepstrum parameters. The av-
erage vector and the diagonal covariance matrix for a new input ut-
terance were estimated by referring to [12]. The following shows
the procedure of the estimation, schematized in Figure 5. It should
be noted that a single pair of µ0 and Σ0 was used commonly as
prior knowledge for all the kinds of vowels.

µi : average vector of the i-th utterance
Σi : diagonal covariance matrix of the i-th utterance
µ0 : average of {µi} (= 1

m

Pm
i=1 µi)

Σ0 : average of {Σi} (= 1
m

Pm
i=1 Σi)

Sµ : diagonal covariance matrix of {µi}
(= 1

m

Pm
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2)

Ω : = Σ0S
−1
µ

µML : average vector of an input utterance
ΣML : diagonal covariance matrix of the input utterance,

where m is the total number of vowel utterances obtained for prior
knowledge and DIAG(α) is a diagonal matrix whose diagonal el-
ements are those of vector α. By using the above quantities, the
average vector and the diagonal covariance matrix of a new input
utterance can be derived as follows.

µMAP = µ̂0 (4)
ΣMAP = B̂Â−1, (5)

where

µ̂0 = Ω(Ω + nE)−1µ0 + n(Ω + nE)−1µML (6)
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n

2
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2
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n

2
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A = Σ−1
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µMAP takes a value between µ0 and µML and approaches µML

as n increases. Although n is originally the number of frames
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Fig. 5. MAP-based estimation of the parameters

of an input vowel utterance, the influence of ML on MAP can be
controlled by changing the value of n.

Since a global affine transformation was adopted to character-
ize the inevitable non-linguistic features, its effectiveness may be
limited. A previous work experimentally showed that the upper
bands (above 2.2kHz) of spectrum of vowels carry a large portion
of speaker identity[13]. Following this finding, two methods were
examined as preprocessing; low-pass filtering and white noise ad-
dition. Although both the methods had been expected to reduce
the performance, the experiments showed that they were effective.

4. RECOGNITION OF 5-VOWEL SEQUENCES

4.1. Experimental set-up

The task is recognizing Japanese vowel sequences and its length is
5; V1-V2-V3-V4-V5. Each vowel is isolatedly produced and oc-
curs once in the utterance (Vi ̸=Vj). Since Japanese has five vow-
els (/a/, /i/, /u/, /e/ and /o/), the vocabulary size, PP, is 5P5=120.
Isolated vowels were recorded for training and testing the proposed
structure models. For testing, the recording was done with 4 male
and 4 female adult speakers. Each of them spoke the 5 vowels 5
times. LPF was done with cut-off frequencies of 2kHz, 4kHz or
8kHz(full band). Cepstrum sequences were calculated from the
LPF speech waveforms. Then, a cepstrum distribution was esti-
mated from the central portion (140msec) of each vowel based on
ML or MAP. 3,125(=55) structures of /a/-/i/-/u/-/e/-/o/ were ob-
tained from each speaker, 25,000(=8×3,125) structures in total.
Reference [14] experimentally showed that size of the structure
can be regarded as articulatory effort. Therefore, all of the 25,000
structures were normalized to have the same size. From each of
the distance matrices, only the upper triangular elements were ex-
tracted to define a “structure vector.” Structure vectors of other
vowel sequences, e.g. /i/-/a/-/u/-/e/-/o/, was obtained by internally
exchanging elements of structure vectors of /a/-/i/-/u/-/e/-/o/.

If the utterance-level structuralization can delete dimensions
of the non-linguistic features, a single speaker is enough to train
the proposed structure models. Thus, for training, a male speaker,
different from the 8 test speakers, spoke the Japanese 5 vowels
isolatedly and the recording was repeated 35 times. The same LPF
was done. The 35 vowel sequences were divided into 7 groups.
Each of them had 5 sets of the 5 vowels. Prior knowledge for
MAP estimation was obtained irrespective of the kind of vowel
in the following manner. To estimate a distribution of an input
vowel of a group, samples excluding those of the group were used
(m=6×5×5). For testing, to estimate a distribution of any input,
all the 7 groups of the 5 vowels were used (m=7×5×5). Each
group can produce 3,125(=55) structure vectors of /a/-/i/-/u/-/e/-
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/o/ with the normalized size. Then, the statistical structure model
of /a/-/i/-/u/-/e/-/o/ was calculated as a single multivariate Gaussian
distribution using 21,875(=7×55) structure vectors. The other
119 models were obtained by exchanging elements of the /a/-/i/-
/u/-/e/-/o/ model. Distance between an input structure and a struc-
ture model was calculated as Mahalanobis distance. The overall
procedure of the structural recognition is shown in Figure 6.

The recognition experiment with the conventional acoustic mod-
els was also done. Two kinds of speaker-independent HMMs were
prepared; 4,130-speaker tied-mixture HMMs and 260-speaker tied-
state HMMs. Besides, another HMM set, whose training data were
the same as those of the structure models with 2kHz cut-off LPF,
were prepared (the reason of preparing the LPF HMMs will be ex-
plained later). Parameters to build HMMs were MFCCs and their
derivatives with CMN. The network grammar allowing only the
120 words was used as language model. Table 1 shows the acous-
tic conditions.

4.2. Results of the experiments

Table 2 shows the recognition performance of the proposed method.
Since PP is 120, the chance level is 0.8%. The recognition accu-
racy of ML and full band is much better than the chance level
but it is still very low. The accuracy was drastically improved
by MAP and LPF. The recognition performance of MAP is bet-
ter with the higher value of n in the lowest cut-off frequency con-
dition. This is considered to be because the accuracy of ML is
improved in that condition. It should be noted that MAP and 2kHz
cut-off LPF gave the 100% performance. This fact indicates that

• Speech recognition without any direct use of absolute acoustic
properties of the individual phonemes

• Speech recognition only with acoustic models (structure mod-
els) of a single speaker

• Speech recognition without any explicit use of normalization
or adaptation techniques

are completely possible in this specific task. In most of the cases,
input speech of different acoustic conditions can be converted to
LPF speech with 2kHz cut-off. Thus, the proposed method was
expected to show higher robustness than the conventional HMMs,

Table 1. Acoustic conditions used in the experiments
Sampling 16bit/16kHz
Window length / shift 25msec / 10msec
Parameters for structures MCEP (α=0.55)
Estimation of distributions ML or MAP
Parameters for HMMs MFCC + ∆MFCC + ∆E

(with CMN)
Cut off freq. of LPF 2kHz, 4kHz or full band

Table 2. Recognition performance of the proposed method
full band 4kHz 2kHz

ML 24.7% 47.9% 86.8%
MAP(n=10) 42.9% 62.7% 100.0%
MAP(n=1) 42.6% 62.1% 100.0%
MAP(n=0.1) 45.7% 60.8% 99.9%
MAP(n=0.01) 70.3% 65.4% 96.7%

Table 3. Recognition performance of the four methods
methods full band 4kHz 2kHz
full band HMM(260) 100.0% 93.8% 72.3%
full band HMM(4,130) 100.0% 95.2% 87.5%
limited band HMM(1) 88.8% 88.8% 88.8%
Proposed(1) 100.0% 100.0% 100.0%

whose performance often degrades due to the mismatch problem.
For fair comparison, another set of HMMs trained with the 2kHz
LPF speech samples used for training the structural models were
examined. Table 3 shows the performance of the conventional
HMMs and the proposed method for different input speech condi-
tions(full band and limited band up to 4kHz and 2kHz). The paren-
thesized numbers are those of training speakers. The full band
HMMs and the limited band HMMs were trained with full band
speech and limited band (up to 2kHz) speech with CMN, respec-
tively. With the limited band HMMs and the proposed method,
2kHz LPF was always done as preprocessing. With the full band
HMMs, CMN was always done for acoustic mismatch cancella-
tion. Although the proposed method showed 100% performance
for every condition, the performance of the full band HMMs were
degraded clearly even with CMN because the training and test-
ing conditions were mismatched. The performance of the lim-
ited band HMMs was shown to be inferior to that of the proposed
method. All the recognition errors with the limited band HMMs
were caused by two specific female speakers. This indicates that
LPF can remove speaker individuality rather well but it is not per-
fect. The remaining speaker information can be removed by struc-
turalizing speech events.

Although the adopted task was very primitive and some prob-
lems about continuous speech including consonant sounds remain
to be solved, the authors consider that the experimental results
show the very high potential of the proposed method.

5. RECOGNITION IN NOISE

5.1. Structural distortion caused by additive noise

The proposed method was devised focusing on only multiplica-
tive and linear transformational distortions. What about additive
noise? Suppose that |Y (f)|2, power spectrum of noisy speech, is
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Fig. 7. Two 5-vowel structures of a male speaker
(lefthand: clean speech, righthand: noisy speech)

approximated as

|Y (f)|2 ≈ |X(f)|2 + |N(f)|2, (11)

where |X(f)|2 and |N(f)|2 are power spectrum of clean speech
and noise, respectively. Then, log power spectrum of noisy speech
(y(f) = log(|Y (f)|2)) is derived as

y(f) ≈ log( exp(x(f)) + exp(n(f)) ). (12)

It is clear that additive noise has non-linear effects on cepstrum and
inevitably distorts a structure. Figure 7 is an example of such dis-
tortion, where two structures of Japanese 5 vowels are visualized
with multidimensional scaling. The lefthand structure is from a 5-
vowel utterance in clean environment. The righthand one is from
the same utterance in white noise (SNR = 10 [dB]). It is clearly
found that additive noise causes structural distortion. Especially,
the distance between /i/ and /u/ becomes shorter. This is consid-
ered to be because the 1st formants of /i/ and /u/ are closer to each
other and the other formants were covered by noise.

5.2. Removal of speaker individuality by additive noise

In the previous section, as preprocessing, LPF was carried out be-
cause a large portion of speaker individuality was observed in the
upper band of spectrum. In Figure 8, spectral envelopes of /a/ ob-
served for 5 different speakers are shown. In clean speech, speaker
individuality is easily found in the upper band. With LPF of 2kHz
cut off, the upper band of the spectrum is modified to have a rather
uniform shape with speaker individuality suppressed. Due to LPF,
the amplitude of the upper band spectrum is very low but low am-
plitude is not necessary and the uniform shape is allowed to be re-
alized with high amplitude. The uniform shape of the upper band
spectrum with high amplitude among speakers can be realized by
adding noise. In Figure 8, spectral envelopes of /a/ of 5 speakers
are shown with white noise (SNR=10[dB]). It seems that, as LPF,
additive noise can suppress speaker individuality rather well and
additive noise is expected to raise the performance of the proposed
method as LPF did in the previous section.

In the previous section, the proposed method showed 100%
performance when LPF with 2kHz cut off was done commonly in
training and testing. In the following section, as in LPF, the same
level of white noise was added commonly in training and testing,
namely no mismatch. In this case, the performance is expected to
be improved. Considering that the proposed method needs speech
samples of only a single speaker for reference, an interesting dis-
cussion is possible about the mismatch problem with respect to
additive noise. If a system has an extremely high-quality text-to-
speech synthesizer to build reference patterns on-line and the sys-
tem can detect the level of environmental noise correctly, then the
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Fig. 8. Spectral envelopes of /a/ of 5 speakers
(top: clean speech, middle: LPF speech, bottom: noisy speech)

system can generate the reference patterns on-line with the noise
matched to the actual environment. In the case of HMMs trained
with thousands of speakers, the complete re-training with speech
samples with the matched noise takes a very long time. Parameter-
level adaptation or modification of the HMMs is considered to
work worse compared to the HMMs generated with the complete
re-training. Since the proposed method uses only a single speaker
to generate reference patterns, the complete re-training is possible
enough if a perfect text-to-speech synthesizer exists. At least, a
human listener has a perfect synthesizer if he is not handicapped,
namely structure-based motor theory.

5.3. The recognition experiment in noise

White noise was added on every vowel sample of the 8 testing
speakers (SNR: 0[dB], 10[dB] or 20[dB]). Two types of LPF were
examined (cut-off: 2kHz or 8kHz). Both of the distortions were
conducted commonly in training and testing. Table 4 shows the
results. In the case of MAP, the best performance is listed out
of the results with n = 10, 1, 0.1, and 0.01. As expected in the



Table 4. Recognition performance of the proposed method in
noise

full band 2kHz
SNR ML MAP ML MAP
∞ 24.7% 70.3% 86.8% 100.0%

20[dB] 73.9% 92.9% 67.9% 99.8%
10[dB] 77.4% 99.1% 68.1% 86.7%

0[dB] 73.9% 87.0% 71.1% 85.1%

Table 5. Recognition performance of the three methods in noise
SNR HMM(260) HMM(4,130) Proposed(1)
∞ 100.0% 100.0% 100.0%

20[dB] 100.0% 98.8% 99.8%
10[dB] 94.3% 97.2% 99.1%
0[dB] 83.0% 86.8% 87.0%

previous section, the accuracy with full band was drastically im-
proved by adding noise. This result clearly indicates that white
noise has a similar effect to LPF; making the upper band spec-
trum envelopes uniform to cancel speaker individuality. However,
the performance with 2kHz LPF got worse in noisy environment
(SNR=10[dB]). That with full band also got worse in the lowest
condition (SNR=0[dB]). The authors are interested in the optimal
combination of LPF and additive noise and some other techniques
for speaker individuality cancellation as preprocessing.

The noisy speech samples were recognized by the conven-
tional methods of full band HMMs with spectral subtraction(SS).
Estimation of the power spectrum in noisy segments was done av-
eraging the spectrum of the beginning portion (300ms) of each ut-
terance. Table 5 shows the performance of the conventional meth-
ods (with SS) and the proposed method. In the case of lower SNR,
the complete and on-line re-training with a single speaker is supe-
rior to the conventional methods with SS, although the re-training
is currently done with natural speech.

6. CONCLUSIONS

This paper applied the acoustic universal structure to speech recog-
nition in clean, limited band, and noisy conditions. Although the
task is very primitive and it is recognition of sequences of iso-
lated Japanese vowels, the experiments showed the high potential
of the proposed method. The proposed structure models trained
only with a single speaker outperformed the conventional HMMs
trained with thousands of speakers with CMN and SS. Since the
mathematical model of the inevitable non-linguistic distortions is
very simple, preprocessing was introduced to effectively suppress
the distortions; LPF and additive noise. It is very interesting that
the recognition performance was drastically improved with the
preprocessing. It was also found that the only preprocessing could
not remove the speaker differences completely and still had out-
lier speakers. Since only a single speaker is used to prepare ref-
erence patterns (acoustic models) in the proposed method, if an
extremely high-quality text-to-speech synthesizer is provided, the
on-line generation of the patterns is possible enough with the always-
matched noise and distortion. For future work, the authors are im-
plementing an algorithm to estimate a structure from continuous
speech including consonant sounds. The integration of the con-
ventional methods and the proposed method is also interesting to
the authors.
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