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Abstract 

In this paper we decompose the Hilbert Spectrum of an audio 
mixture into a number of subspaces to segregate the sources. 
Empirical mode decomposition (EMD) together with Hilbert 
transform produces Hilbert spectrum (HS), which is a fine-
resolution time-frequency representation of a non-stationary 
signal. EMD decomposes the mixture signal into some intrinsic 
oscillatory modes called intrinsic mode function (IMF). HS is 
constructed from the instantaneous frequency responses of 
IMFs. Some frequency independent basis vectors are derived 
using independent component analysis (ICA). Kulback-Laibler 
divergence based k-means clustering algorithm is proposed to 
group the basis vectors into number of desired sources. Then 
projecting HS on to the grouped basis vectors derives the 
independent source subspaces. The time domain source signals 
are assembled by applying some post processing on the 
subspaces. We have also produced some experimental results 
using our proposed separation algorithm.   

1. Introduction 

The usual approach of single mixture audio source separation is 
to project the mixture on to the time-frequency plane and to 
analyze auditory scenes. Most of the CASA (computational 
auditory scene analysis) based approaches employed Fourier 
transform method for time-frequency representation of mixture 
signal assuming that the audio signal is piecewise stationary [1, 
2]. In [3], a number of sources from two mixtures have been 
separated considering the phase and amplitude variations 
between two sensors. They have also assumed that not more 
than one source is active at any time-frequency point in the 
spectrogram. N. Roman et al [4] used binaural mixtures of the 
convolution of speech and various noises from different azimuth 
and separated the speech signals using binary masking method. 
Sam T. Roweis [5] proposed learning based statistical pattern 
recognition process to separate the sources from single mixture. 

Our proposed separation algorithm can separate the audio 
sources from their single mixture without any prior knowledge 
about the sources. This system has also taken into account that 
the audio signals are mostly non-linear and non-stationary. 
Empirical Mode decomposition (EMD) is a new technique for 
nonlinear and non-stationary time series analysis (Huang et al 
[6]) has recently been used in many signal processing 
application including water and wind wave analysis, tone 
separation etc. In this paper, we have employed the EMD 
together with Hilbert transform for time-frequency 
representation of the audio signals. EMD decomposes the 
mixture signal as collection of some intrinsic mode functions 
(IMFs) and this action is very much similar to the filter bank 
analysis [7]. Instantaneous frequency of each IMF is calculated 

using analytic signal method. The Hilbert Spectrum (HS) of the 
mixture signal is constructed by properly arranging the 
frequency responses of the IMFs along time and frequency axes. 

The data space corresponding to the instantaneous 
frequency response of the IMFs and the mixture signal are used 
to derive some frequency independent basis vectors using ICA. 
Kulback-Laibler divergence (KLd) based clustering algorithm 
is employed to group the basis vectors into the number of 
sources. The projection of the HS to each group of frequency 
basis corresponds to a subspace of the individual source signal. 
We have simulated our proposed system and presented some 
experimental results to separate the sources from single mixture 
of two audio signals. The results show that this method can 
produce applicable results in source separation arena. 

Regarding the organization of this paper, we have described 
the basics of EMD in section two, the proposed separation 
algorithm is presented in detail in section three, some 
experimental results are demonstrated in section four, and 
section five contains some concluding remarks and also future 
planes with this work.  

2. EMD Basics 

Empirical mode decomposition is an adaptive process to 
decompose a signal into oscillating components obeying some 
basic properties. EMD has recently been pioneered by N.E. 
Huang et al. for representing non-stationary signals as sums of 
zero-mean AM-FM components [6].  

The principle of the EMD technique is to decompose a 
signal s(t) into a sum of the functions imfi(t) called intrinsic 
mode function (IMF). Each IMF satisfies two conditions: (i) in 
the whole data set the number of extrema and the number of 
zero crossing must be same or differ at most by one, (ii) at any 
point, the mean value of the envelope defined by the local 
maxima and the envelope defined by the local minima is zero. 
The first condition is similar to the narrow-band requirement for 
a stationary Gaussian process and the second condition modifies 
a global requirement to a local one, and is necessary to ensure 
that the instantaneous frequency will not have unwanted 
fluctuations as induced by asymmetric waveforms [8]. There 
exist many algorithmic approaches of EMD [7], [8]. At the end 
of EMD the signal s(t) is represented as:  
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where n is the number of IMFs and rn(t) is the final residue.  
Another way to explain how EMD works is that it extracts 

out the highest frequency oscillation that remains in the signal. 
Thus, locally, each IMF contains lower frequency oscillations 
than the one extracted just before. An audio mixture signal 



(mixture of speech and flute sound) and the decomposed IMFs 
are shown in Figure 1. 
 

 
 

 
 
Figure 1. EMD of an audio mixture, (a) mixture (speech and 
flute sounds) audio (b) first six IMFs out of total 14 IMFs. 

2.1. Instantaneous Frequency 

Every IMF is a real valued signal. Analytic signal method is 
used to calculate the instantaneous frequency of the IMFs. The 
analytic signal corresponding to a real signal x(t) is defined as 
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where H[] is the Hilbert transform operator, a(t) and θ(t) are 
instantaneous amplitude and phase respectively. So the 
instantaneous frequency ω(t) can easily be derived as: 
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Using Equations (2.1) and (2.2), the analytic signal 
associated with each of the IMFs and thus the instantaneous 
frequency of each of them is calculated.  

2.2. Hilbert Spectrum 

Hilbert Spectrum describes the joint distribution of the amplitude 
and frequency content of the signal as a function of time. This 

distribution is designated as Hilbert amplitude spectrum H(ω,t) 

or simply Hilbert spectrum. To build H(ω,t), the instantaneous 
frequency of each IMF is first scaled according to the given 

frequency bins. Then for every imfi(t), if  ωi(t)is the 
corresponding instantaneous frequency, we represent the time-

frequency plane the triplet {t, ωi(t), ai(t)} where ai(t) is the 
amplitude of the analytic signal associated to imfi(t). It is noted 
that the time resolution of H is equal to the sampling rate. Figure 
2 represents the Hilbert spectrum of the audio signal of Figure 1 
using 256 frequency bins.  
 

 
 
Figure 2. Hilbert amplitude spectrum (or simply Hilbert 
spectrum) using 256 frequency bins. The amplitude is in dB. 
 

During the construction of the Hilbert spectrum, the phase 
matrix φ(ω,t) representing the phase information corresponding 

to each time-frequency point of H(ω,t) is saved to be used in re-
synthesis of the extracted sources. 

3. Source Separation Algorithm 

We have already derived the Hilbert (amplitude) spectrum (HS) 
from the time domain signal. Our approach of source separation 
is to decompose the Hilbert spectrum of mixture signal into a 
number of HSs corresponding to each independent source. 
The overall Hilbert spectrum H can be represented as the 
superposition of N independent source Hilbert spectrums hi as: 
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hi is also uniquely represented as the outer product of an 
invariant frequency basis vector Fi, and corresponding 
amplitude envelope Ai (time basis vector) which describes the 
magnitude variation of the frequency basis vectors over time 
[2].  
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Then corresponding hi is represented as  
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So by summing all the Hilbert spectrums: 
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The amplitude weighting vector Ai corresponding to frequency 
(independent) basis vector Fi is obtained by projecting H 
against Fi as: 
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To decompose the spectrum H into some independent hi, it 
is urged to determine some frequency independent basis over 
the whole H. It is also assumed that the derived frequency 
independent basis vectors are stationary over the whole time 
sequences of H. To meet this condition the mixture signal is 
segmented into some blocks with almost stationary energy 
distribution [1,2].  

3.1. Selection of Data Space 

The Hilbert spectrum is actually the resultant effect of the 
Hilbert spectrums of individual IMF [6]. Instead of 
decomposing the high dimensional data space H we have 
derived the new vectors each of which is the spectral projection 
of the mixture on to an IMF. These projection vectors are then 
used to derive some frequency independent basis vectors to 
produce the source subspaces. The spectral projection of the 
mixture signal x on to the nth IMF is defined as 
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where Cxn(ω) is the cross marginal spectrum of mixture and nth 

IMF, Sx(ω) and sn(ω) are the marginal power spectra of mixture 
and  nth IMF respectively at frequency index ω.  

The projection term Pxn(ω) is a quantitative measure of how 

much the mixture is correlated with nth IMF at ωth frequency 
band. There some benefits to use the spectral projection vectors 
instead of using whole H for subspace decomposition. It reduces 
the computational complexity and boosts the convergence 

during ICA. If imfHn(ω,t) is the Hilbert spectrum of nth IMF, its 
corresponding marginal spectra can be defined as: 
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where T is the total data length. The marginal spectra of the 

mixture is calculated by replacing imfHn(ω,t) by H(ω,t).The 
marginal spectra of first three IMFs using 256 frequency bins 
are shown in Figure 3(a). The Fourier transform (512 point 
FFT) of that IMFs are also presented in Figure 3(b). It is 

observed that, sn(ω) has a totally different meaning from the 
Fourier spectra (for detail [6]). The data matrix X containing 
the spectral projections of mixture on the IMFs is used to derive 
the frequency independent basis vectors by using ICA as 
described in the following sections.      
 

   
(a)                                              (b) 

Figure 3. Frequency response of the first four IMFs. (a) 
Marginal spectra using 256 frequency bins (b) Fourier spectra 
using 512 point FFT (displaying only 256 point) 

3.2. Constructing Independent Subspaces 

Usually the number vectors in the data matrix X is greater than 
the number of frequency basis vectors required for subspace 
decomposition. The dimension of the spectral projection matrix 
X is first reduced by principal component analysis (PCA) [1, 2]. 

The basis vectors obtained by PCA are only uncorrelated 
but not statistically independent. To derive the independent 
basis vectors a further procedure called ICA must be carried 
out. The ICA model [9] expresses the observation signals x 
(comes from PCA, i.e. reduced X) as the product of mixing 
matrix A and vectors of statistically independent signals s, 

Asx =  (3.9)

where A is l×m (pseudo-) invertible mixing matrix with 
orthogonal columns, s is random vector of m signals, and X is 

an l dimensional vector of observation with l≥m. JadeICA 
algorithm [10] is used here to estimate the demixing matrix W 
such that:  
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where F is the collection of independent basis vectors.  
Once the frequency independent basis vectors F have been 

obtained the corresponding amplitude envelopes A can be 
obtained by Equation (3.6). The basis vectors are then grouped 
into the number of sources. Vectors F and A are grouped into Fi 
and Ai subsets respectively. For a two source mixture problem 
i=1,2 i.e. two subsets of F and A. Then the Hilbert spectrum of 
individual source is constructed using each group of F and A as 
in Equation (3.2).  

We have introduced a Kullback-Laibler divergence (KLd) 
based k-means clustering algorithm for the grouping process. 
Symmetric KLd measures the relative entropy between two 
probability mass functions p(x) and q(x) over a random variable 
X as: 
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Each basis vector is normalized and transformed to its 
corresponding probability mass function. Then KLd is used for 
distance measure between two basis vectors during k-means 
clustering whereas traditional k-means measures the Euclidean 
distance. KLd being information theoretic measure performs 
better. The value of k is selected manually.     

3.3. Source Re-synthesis 

We have implemented a reversible process from Hilbert 
spectrum to get back the time domain signal to re-synthesis the 
extracted source signals. As shown in equation (2.1) Hilbert 
transform only imposes the imaginary part (keeping same the 
real component) to produce the analytic signal. It implies that 
time domain signal is assembled by filtering out the imaginary 
part from the HS. When the Hilbert spectrum (hi) of every 
source is derived, the spectrum of the real component of each 
time-frequency point is calculated by element wise 

multiplication of hi and the cosine of the phase matrix φ as: 
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Then the time domain source signal si(t) is obtained by 
summing the real components over the frequency bins for every 
time instant as: 
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The same process is repeated for each stationary block of he 
mixture. Concatenating the individual source of every block 
using windowed overlap-add method produces the whole 
separation. 

4. Experimental Results 

We have used some mixtures of two audio streams to test the 
efficiency of our proposed separation algorithm. The individual 
test stream is a mixture of male speech and other sound like 
female speech, violin, telephone ring, jazz music, white noise 
etc. The audio streams m1, m2, m3 and m4 are the mixture of 
male speech plus telephone ring, jazz music, female speech and 
flute sound respectively. All mixtures are with 16kHz sampling 
rate and 8-bit amplitude resolution. We have applied the 
separation algorithm on the audio segments with no large 
variance of spectral distribution and then concatenate the 



extracted source signals (of every segment) to produce the 
separation over the entire audio stream.  

It is not easy to propose a strong feature for quantitative 
measure of the separation performance. The average value of 
the running short-term relative energy between original and 
separated signal is used here for quantifying the separation 
efficiency. It is termed here as original to separated signal ratio 
(OSSR) and mathematically defined as: 
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where soriginal and sseparated are the original and separated signal 
respectively, w is window length and it is 10 ms here. In the 
case for zero energy in a particular window, no OSSR 
measurement is performed.   

This OSSR calculates the relative short-term energy level 
between those two signals. It is used here to measure the 
difference between two signals in terms of short-term energy 
level. If the two signals are similar, the OSSR produces 0 value 
and any other value (positive or negative) is a measure of their 
dissimilarity. Table 1 shows the average OSSR of each signal 
for every mixture. Smaller deviation of OSSR from 0 indicates 
the higher degree of separation.      

Table 1: The experimental results of our proposed algorithm. 
Each value represents relative short-term energy level 
between original and after separation of that signal.  

Mixtures  OSSR of Sig1 OSSR of Sig2 
m1 -0.2403 -0.0570 
m2 -0.3009 0.0128 
m3 -0.4320 -0.1570 
m4 0.3766 0.1620 

Table 2: The separation performance and audio quality of the 
re-synthesized signals by human evaluation (by hearing). The 

performance score is between 1 (for min) and 5 (for max).    

Sig1  Sig2   
Mixtures  Separation 

performance  
Audio 
quality  

Separation 
performance  

Audio 
quality 

m1 4.75 4.25 4.5 4.25 

m2 3.75 4.0 3.75 3.75 

m3 3.50 3.50 4.0 3.75 

m4 4.0 3.75 4.75 4.25 

 
Besides the quantitative measure of separation efficiency, 

hearing by human is perhaps the best way to ensure the 
separation performance and the audio quality (how much the 
separated signal is clear in hearing relative to the original one) 
of the re-synthesized signal. We have asked five people who are 
directly related to speech processing research to evaluate the 
separation performance and the audio quality of the separated 
signals. They have scored the performance between 1 and 5 for 
highest and lowest performance respectively. The average 
results of human evaluation are presented in Table 2. Based on 
quantitative and human evaluation, it is observed that the 
separation efficiency is noticeable in this research area.    

5. Discussion and Conclusions  

In this paper a method for single mixture audio source 
separation using EMD and ICA is presented. EMD has many 
uses for wave data analysis and recently it is using as a filter-
bank analysis. We have technically employed it for audio 
source separation. The specialty of the Hilbert spectrum is that 
the time resolution can be as precise as the sampling period and 
the frequency resolution depends on the choice (it should not be 
the power of 2 as in Fourier method) up to Nyquist frequency. 
When the type of analyzing signal is known the required time 
frequency resolution can be defined in prior. However, if we 
donít know anything about the signals inside the mixture, the 
better time-frequency resolution obviously performs better in 
separation. The separation efficiency is presented as the average 
amount of signal to mixture energy. Also the separation 
performance and the audio quality of the separated signals are 
evaluated by hearing. The experimental results are sound good.  
    Additional post-processing is also necessary to improve the 
audio quality of the extracted signals. An enhancement is 
expecting by implementing the EMD process as a perceptually 
tuned filter bank instead of simple EMD. The automatic 
detection of number of sources in a given mixture stream, their 
proper separation and the improvement of the robustness of 
separation process will be the main concern for our future 
works.  
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