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Abstract

Speech representation provided by acoustic phonetics, spectro-

gram, is very noisy representation in that it shows every acoustic

aspect of speech. Age, gender, size, shape, microphone, room

and line are completely irrelevant to speech recognition, pro-

nunciation assessment, and so on. But the spectrogram is af-

fected easily by these factors. This is the very essential reason

why speech systems are sometimes unreliable and the author

supposes that the education should not endure this inevitable

characteristics. The author proposed a novel method of acous-

tic representation of speech where no dimensions of the above

factors exist. The method was derived by implementing struc-

tural phonology on physics. This paper examines whether the

new representation of speech can provide a good tool of pro-

nunciation assessment. Results of the experiments with good

and intentionally-bad pronunciations of a single speaker showed

that all the students are acoustically located between the two

pronunciations, indicating that all the students are judged to be

acoustically closer to the speaker than the speaker himself is.

This result shows that the proposed method can delete the irrel-

evant factors and is extremely reliable and effective in CALL.

1. Introduction

Pronunciation training should be based upon articulatory pho-

netics because a speech sound is produced adequately only by

the correct articulation. But it is very difficult and expensive

to measure or estimate movements of the articulators of stu-

dents, and then training on articulatory phonetics requires spe-

cialists. It is true that all the language teachers cannot be spe-

cialists. As an alternative to articulatory phonetics, it has been

investigated whether speech representation of acoustic phonet-

ics, spectrogram, can be a good tool for pronunciation assess-

ment. In a meaning, the spectrogram can show well how good

the pronunciation is because teachers can judge goodness of

the segmental aspect of the pronunciation by hearing the spec-

trogram. In another meaning, however, the spectrogram can-

not show well goodness of the pronunciation because teach-

ers cannot judge it by looking at the spectrogram. Teachers

expected speech engineering, i.e., computers, to judge it well

by looking at the spectrogram, and then CALL systems were

developed with speech recognition technologies. The question

is whether computers can do reliable and pedagogically-sound

enough judgment. In the beginning, CALL systems were ac-

cepted to teachers and students because students could have

virtual teachers anytime and anywhere with multimedia attrac-

tions. But recently, some papers report unreliability and insta-

bility of the systems[1]. Native speakers are sometimes judged

to be worse than students, for example. Strictly speaking, the

spectrogram is a noisy representation of speech in that it shows

every acoustic aspect of speech. Acoustic phonetics may be

phonetic acoustics. It is the case with speech recognition, whose

task is extracting lexical identity from speech. But the spec-

trogram can show things completely irrelevant to the task. By

collecting a large amount of data, speaker-independent models

are built. But they often require speaker adaptation techniques,

which implies that the speaker-independent models are not re-

ally speaker-independent. Collection of more data, i.e., quanti-

tative solution, seems not to work pedagogically-sound enough.

A novel and qualitative solution was proposed by the au-

thor. Deletion of the non-linguistic information was done not

by collecting data but by deleting all the dimensions math-

ematically to represent the irrelevant things from speech[2].

The obtained acoustic representation of speech is regarded as

physically-implemented phonology because only the interrela-

tions of speech events are focused. The following section briefly

introduces how to implement phonology on physics, where

structuralization of speech events is carried out based upon in-

formation theory. After that, it is investigated whether the new

representation is effective enough for pronunciation assessment.

2. Physical implementation of phonology

2.1. Acoustic modeling of the non-linguistic information

In order to delete the non-linguistic information from speech,

it is modeled firstly, and then an algorithm for its deletion is

implemented. In speech recognition, distortions caused by the

non-linguistic events are often classified into three kinds; addi-

tive, multiplicative, and linear transformational distortions. Out

of the three, the additive distortion (noise) is ignored because it

is not inevitable. Students can turn off a TV set before learning

English. The other two distortions are, however, inevitable and

their deletion has to be done not by hand but by an algorithm.

Acoustic characteristics of microphones and rooms are typ-

ical examples of the multiplicative distortion. GMM speaker

modeling indicates that a part of speaker individuality is also

regarded as the multiplicative distortion. If a speech event is

represented by cepstrum vector c, the multiplicative distortion
is addition of b and the resulting cepstrum is shown as c′ = c+b.

Vocal tract length difference is a typical example of the lin-

ear transformational distortion. The difference is often modeled

as frequency warping of the log spectrum, where formant shifts

are well approximated. According to [3], any monotonously

continuous frequency warping of the log spectrum is mathe-

matically converted into multiplication of matrixA in cepstrum

domain. The resulting cepstrum is shown as c′ = Ac.
Various distortion sources are found in every step of speech

communication. But the total distortion of speech caused by

the inevitable sources, Ai and bi, is eventually modeled as c′ =
Ac + b, known as affine transformation.



2.2. From phonetics to phonology

In phonology, the non-linguistic information is ignored in re-

searchers’ brain and speech sounds are represented as abstract

entities named phonemes. Phonology is a science to clarify a

phonemic system hidden in a language. Inspired by Saussure’s

structuralism, Jakobson, Halle, and others have discussed struc-

ture of the phonemes embedded in a language with distinctive

features[4] and drew a tree diagram of the phonemes. Classi-

fication of the phonemes is done so that a set of phonemes un-

der every node of the tree comprise a natural class. In phonol-

ogy, the structure is extracted in a top-down way based upon

researchers’ knowledge on the language. In this work, the struc-

ture is determined in a bottom-up way where not knowledge but

distance measure between two elements is required. An n-point
structure is represented uniquely by distance matrix among the

n points. Viewing n elements as structure means that the ele-
ments are observed only relatively and the structure extraction

can be regarded as a process of ignoring some information in the

elements. If it is possible to embed all the sources of the non-

linguistic information in the ignored information, the resulting

structure will be the desired acoustic representation.

2.3. Implementation of phonology on physics

Phonology claims that the structure is universal with regard to

all the kinds of non-linguistic information, which is mathemat-

ically translated that an n-point structure (distance matrix) is
invariant with any affine transformation. This looks impossible,

which can become possible by the following procedure.

Let phoneme x be represented as distribution dx(c) in a
cepstrum space and distance between two elements (distribu-

tions) is calculated by Bhattacharyya distance (BD) measure.

BD(dx(c), dy(c)) = − ln

Z ∞

−∞

p
dx(c)dy(c)dc (1)

This measure is derived based on information theory and can be

interpreted as the amount of self-information of joint probabil-

ity of the two independent distributions dx(c) and dy(c). If the
two distributions follow Gaussians, the following is obtained.
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µx and Σx are the average vector and the variance-covariance

matrix of dx(c), respectively. µxy is µx−µy . Although affine

transformation of c′=Ac+b modifies N (µ, Σ) into N (Aµ +
b, AΣAT ), BD between dx(c) and dy(c) is not changed.

BD(Aµx + b, AΣxAT , Aµy + b, AΣyAT )
= BD(µx, Σx, µy, Σy)

(3)

These facts mean that BD between any two of the n distribu-
tions (phonemes) is not changed by any of an affine transfor-

mation and that the structure composed of the n phonemes is
not changed. Multiplication of A and addition of b are geo-
metrically interpreted as rotation and shift of the structure, re-

spectively. For example, acoustic changes of speech caused by

increase of vocal tract length, i.e., human growth, is mathemati-

cally regarded as very slow rotation of the structure which takes

about 15 years. When dx(c) and dy(c) are modeled as Gaus-
sian mixtures, the invariance is still valid because the structure

of all the component Gaussians cannot be changed at all. Now,

the desired acoustic representation is gracefully derived.

3. Distance measure between two structures

3.1. Speech database used in the analysis

ERJ (English Read by Japanese) database[5] was used, which

contains English sentences read by 202 Japanese students,

Japanese English (JE), and 20 native speakers of General Amer-

ican (GA). Table 1 shows conditions for the acoustic analysis1

and phoneme-to-phoneme distance is defined as average dis-

tance over the three state-to-state BDs between two phonemes.

3.2. What’s possible with the new representation?

With the proposed representation, the pronunciation of a student

is modeled as a structure composed of the n phonemes and this
structure is visualized by a tree diagram, for example. Figure 1

shows a tree example of a poor Japanese student.

It should be noted that the representation contains only the

acoustic interrelations of speech events with no absolute acous-

tic properties of the individual events. If all the phones are mod-

eled with this method, the entire model cannot recognize even

a single phone input because it does not have any absolute in-

formation on the individual phones. For the same reason, the

entire model cannot synthesize any phones. What’s possible?

In the following discussions, it is shown that the interrelational

model of all the speech events can do a very good job.

3.3. Distance measure between two structures

If an M -point structure, P , exists in Euclidean space, the fol-
lowing equation is true, where PG is a gravity center of {Pi}.s

1
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If BD is used for Euclid distance, the above equation is not sat-

isfied. But
√
BD satisfies the equation approximately. Figure 2

Table 1: Conditions for the acoustic analysis

sampling 16bit / 16kHz

window 25 ms length and 10 ms shift

parameters FFT-based cepstrums and their derivatives

speakers 202 Japanese and 20 Americans

training data 60 sentences per speaker

HMMs speaker-dependent, context-independent, and 1-

mixture monophones with diagonal matrices

topology 5 states and 3 distributions per HMM

monophones b,d,g,p,t,k,jh,ch,s,sh,z,zh,f,th,v,dh,m,n,ng,l,r,

w,y,h,iy,ih,eh,ae,aa,ah,ao,uh,uw,er,ax
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Figure 1: A structurally represented poor Japanese student

1Mathematically speaking, the variance-covariance matrix of an
HMM should be a full matrix to allow rotation of the structure. This
condition might cause some distortions in results of the experiments.
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Figure 3:
√
BD approximately satisfies Equation (5).

shows values of the left and the right terms of the above equa-

tion calculated from all the individual students with their En-

glish vowel models. The same tendency was found with the

consonant HMMs. In the following discussions, BD denotes√
BD. Now, let us consider two structures, P and Q. If M

points are phones in a cepstral space with their distributions,

then the following equation is approximately true for JE phones.s
1
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Figure 3 shows the both terms calculated from any two of the

students with their vowel models. It is the case with the conso-

nant models. The above two equations lead to the following.s
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The right term is approximation of averaged cepstrum distance

over all the corresponding phone pairs between the two struc-

tures after shift and rotation, where the two gravity centers are

put at a position and one of the two structures is rotated so that

the
P |θi| (see in Figure 4) should be minimized. The left term

is Euclid distance between two distance matrices by viewing a

matrix as a vector. In brief, Euclid distance between two ma-

trices, structural distortion, approximates cepstrum distance av-

eraged over all the corresponding phone pairs of the two struc-

tures after full adaptation with regard to A and b.

4. Automatic scoring of the proficiency

4.1. Preliminary discussions of the structural comparison

Figures 5 and 6 show the structural distortion and the positional

distortion, which is defined as the averaged cepstrum distance
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Figure 4: Two structures and their shift & rotation for fitting
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Figure 5: Structural and positional distortions for vowels
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Figure 6: Structural and positional distortions for all the phones

with no shift or rotation, for two cases. One is the distortion

between two GA speakers (GA-GA) and the other is that be-

tween a GA and a Japanese speaker (GA-JE). In Figure 5, only

the vowels are used and, in Figure 6, all the phones are used.

In the former, while GA-JE and GA-GA distributions are over-

lapped in the positional distortion, they are clearly separated

in the structural distortion. This was much to be expected be-

cause the two distortions differ in whether adaptation is done

or not. In the latter, however, the structural distortion shows

less clear separation. The author considers two reasons. One is

that phoneme-to-phoneme distance is simply defined as average

of the three state-to-state distances although a dominant state is

highly expected among the three states. The other is form of the

variance-covariance matrix, which should have been a full ma-

trix to allow rotation of the structure. The better conditions will

be examined in future works and in this paper, for automatic

assessment, adequate selection of the phone pairs are done.

4.2. Automatic scoring of the pronunciation proficiency

Student i in ERJ has his/her pronunciation score si rated by 5

American teachers (1 ≤ si ≤ 5). Then, the phone pair selec-
tion was done so that correlation between 5 − si and the struc-
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Figure 7: Proficiency assessment with the structural distortion

Table 2: Four kinds of pronunciations used in the experiment

spk USA(F) USA(M) author(A) author(B)

gender F M M M

age 50 46 36 36

mic SEN SEN cheap cheap

room SP SP living living

AD DAT DAT laptop laptop

pron. perfect perfect good Japanized

SEN = Senheiser, SP = Sound-proof

tural distortion between student i’s structure and the teacher’s
one should be maximized. The number of the selected phone

pairs is 52. Figure 7 shows results of automatic scoring of the

pronunciation proficiency based upon the structural distortion.

Good correlation is obtained between the two quantities.

5. Two different pronunciations of a speaker

An interesting experiment was carried out with two different

pronunciations of a single speaker. The author is a Japanese and

was an amateur actor of an English drama club. On the stage, he

was requested to pretend to be an American and mastered very

well how to control muscles around the mouth and the belly and

how to control air flow, which was perceived by the author as

rather different from the Japanese way of control. Four pronun-

ciations were prepared, shown in Table 2. Two are a male (M)

and a female (F) Americans. The other two are the author’s nor-

mal pronunciation (A) and his intentionally Japanized pronun-

ciation (B). Speaker-dependent HMMs were built for (F), (M),

and (B). Acoustic similarity between samples of (A) and the in-

dividual models was calculated in the following three ways.

•With the normal likelihood score of P (o|M).
•With the posteriori probability score of P (M |o).
•With the proposed structural distortion score.
P (M |o) is often used in CALL systems to normalize differ-
ences in compatibility between an input speaker and the acous-

tic models. If the author’s normal pronunciation (A) should be

pedagogically judged to be closer to (F) than to (B), the author

can claim that Table 2 is the most difficult condition for speech

technology. This is because, between (A) and (F), everything

is mismatched except for the proficiency and because, between

(A) and (B), everything is matched except for the proficiency.

Figure 8 shows results with P (o|M) and P (M |o), where
(A) is placed between the two models proportionally to the sim-

ilarity scores. With P (o|M), (A) is completely the same as (B),
which was much to be expected because (A) and (B) are from

the same speaker. Although P (M |o) is often used for com-
patibility normalization, Figure 9 shows that it does not always

work. This sometimes happens in actual classrooms and this is
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Figure 8: Proficiency rating with P (o|M) and P (M |o)
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Figure 9: Proficiency rating with the structural distortion

why the conventional CALL systems are sometimes criticized.

Figure 9 shows results with the structural distortion. The other

Japanese and Americans (set 6 in ERJ) are also plotted. White

and green triangles represent Japanese and Americans, respec-

tively. Above and below the line represent female and male

speakers, respectively. It is surprising that all the Japanese stu-

dents but a bilingual speaker are judged acoustically closer to

the author (B) than the author himself (A) is. This can never

happens if direct spectrogram-to-spectrogrammatching is done.

This is because the spectrogram shows every acoustic aspect of

an event and can be considered as rather noisy for pronuncia-

tion assessment. The author believes that the education should

be supported only by the reliable and stable technology.

6. Conclusions

This paper investigates whether the phonological representation

of speech, recently proposed by the author, can realize good and

reliable assessment of the pronunciation. Although it is impos-

sible to recognize or synthesize a single phone based upon the

proposed representation, it can assess the pronunciation profi-

ciency accurately and its reliability and stability is remarkably

high. The author is further trying to increase the reliability and

examining the method with children’s voices.
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