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ABSTRACT

This paper proposes yet another representation of speech sounds.
The proposed speech modeling can remove both multiplicative
and linear transformational distortion from speech theoretically. It
means that speech sounds are represented without being affected
by any static distortion inevitably involved in production, encod-
ing, transmission, decoding, and hearing processes, such as differ-
ences in vocal tract length, gender, age, microphone, room, line,
auditory characteristics, and so on. The method acoustically mod-
els not individual phones but their entire system, where only acous-
tic interrelation embedded in all the kinds of phones is focused.
Since the method provides us with no absolute acoustic properties
of phones, it cannot recognize or synthesize even a single phone.
On the contrary, the proposed method is shown to be able to be ap-
plied to pronunciation assessment effectively and reliably, where
the proficiency of pronunciation is estimated without using acous-
tic models of the individual phones directly in the matching.

1. INTRODUCTION

In every speech application, speech sounds are modeled based
upon acoustic phonetics. In speech recognition, context-dependent
phone models are built using cepstrum parameters and, in speech
synthesis, context-dependent (poly-)phone waveforms or models
are stored. In this paradigm, the individual speech units have their
own acoustic templates. But acoustic properties of a speech unit
is easily affected and distorted by various factors such as micro-
phone, room, line, speaker, and so on. If the templates are used
in conditions different from those where the templates were built,
some unexpected results are often seen. This is called “mismatch
problem” and, as far as the author knows, all of the previous stud-
ies tried to solve it in one of the following two methods. In the first
one, the templates are prepared separately for each of all the con-
ditions possible and, if this is practically impossible, the templates
are adapted by using a small number of acoustic observations. In
the second, not the templates but the observations are modified
to be normalized. In this case, the templates are built after nor-
malization. Even with adaptation or normalization, however, it is
known that every speech recognizer still has “sheep and goats.”
This fact is partly attributed to limitation in the amount of speech
samples used for adaptation or normalization. But the author be-
lieves that another and essential reason for the problem is that ev-
ery speech system is built on an assumption that the system has
to have acoustic models of individual phones. Under this assump-
tion, which is derived from phonetics, even after normalization,
every model comes to have certain acoustic properties with regard
to each of the various factors mentioned above. If we continue to
use the phonetics-based models of speech, strictly speaking, we
may never be able to solve the mismatch problem completely.

Fig. 1. Halle’s tree diagram of Russian phonemes

In this paper, another acoustic representation of speech is pro-
posed, which is inspired by phonology. Phonetics was born to
describe phones and phonology was born to describe a language.
How does phonology describe a language and its sounds? Phonol-
ogy is intended to clarify a system hidden or embedded in a set of
sounds of a language (phonemes) or in sequences of the phonemes.
Inspired by Saussure’s structuralism, Jakobson, Halle, Clements,
and others have discussed the system of phonemes embedded in
a language by using distinctive features[1, 2]. Figure 1 shows
Halle’s tree diagram proposed for Russian phonemes. One feature
can classify all the phonemes into two groups. Another feature will
give us four ones. The order of applying the features is determined
so that a set of phonemes under every node comprise a natural
class. Putting it another way, a set of phonemes under every node
always correspond to a linguistic event specific to the phonemes
of the node. In phonology, structure is extracted in a top-down
way with knowledge on a specific language. But structure can be
extracted in a bottom-up way where not linguistic knowledge but
acoustic similarity measure between two phonemes is required. In
the following sections, the bottom-up structure of phones is well
discussed. It is surprising that, partly because not the individual
phones but their entire structure is focused, the structure extrac-
tion can remove both multiplicative and linear transformational
distortion from speech as gracefully as cepstrum smoothing can
remove source information from log power spectrum. Structurally
represented speech events have no dimensions for static distortion
inevitably involved in production, encoding, transmission, decod-
ing, and hearing processes. This implies that Jakobson’s tree, i.e.,
the universal and essential structure of speech, exists not only in
his insight into a language but also in pure acoustics of speech.

2. SPEECH DATABASE USED IN THE ANALYSIS

The author and his co-workers designed and developed an English
database read by Japanese students and General American (GA)
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speakers for CALL researches[3], which was used as speech sam-
ples in this work. The database is divided into two sets. One is
related to segmental aspect of pronunciation and the other is to its
prosodic aspect. In recording, a speaker was asked to repeat read-
ing given words or sentences until he/she judged that the correct
pronunciation was done. As for Japanese English (JE) samples,
the resulting database can be said to contain only correct English
utterances at least for Japanese students. A subsequent analysis of
pronunciation errors showed that the JE samples still contained a
large number of pronunciation errors[3]. The number of speakers
is 222 (100 male and 102 female Japanese and 8 male and 12 fe-
male Americans). Pronunciation proficiency was rated by Ameri-
can teachers for the individual students in terms of the three aspects
of pronunciation; segmental, rhythmic, and intonational aspects.

3. ANOTHER REPRESENTATION OF SPEECH

3.1. Training of speaker-dependent monophone HMMs

With the GA and JE material of the database, monophone HMMs
were trained for each speaker. Here 60 sentence utterances were
used for the training and the 60 sentences were a part of TIMIT
phonetically rich sentences. Content of the sentences depended on
speakers. Due to the rather small number of training samples, sev-
eral diphthongs were not found. Then, HMMs of all the monoph-
thongs and consonants were trained. Table 1 shows acoustic con-
ditions of the training. Phonemic transcriptions of the training data
were automatically generated by looking up PRONLEX lexicon
and, consequently, pronunciation errors in the JE samples were
not represented explicitly in the transcriptions.

3.2. Bottom-up clustering of phone HMMs

Bottom-up clustering of some elements is possible only with dis-
tances between any two of the elements (distance matrix). Here,
square root of Bhattacharyya distance (BD) measure was adopted.
BD between two elements (distributions) is formulated as follows.
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where µu is average vector in element u and µuv is µu−µv . Σu is
variance and covariance matrix for u. It is assumed that element u
can be modeled appropriately as Gaussian distribution. This dis-
tance measure is derived based on information theory and can be
interpreted as amount of self-information of joint probability of
two independent events (elements).

Table 1. Acoustic conditions for the analysis
sampling 16bit / 16kHz
window 25 ms length and 10 ms shift
parameters FFT-based cepstrums and their derivatives
speakers 202 Japanese and 20 Americans
training data 60 sentences per speaker
HMMs context-independent and 1-mixture monophones

with diagonal matrices
topology 5 states and 3 distributions per HMM
monophones b, d, g, p, t, k, jh, ch, s, sh, z, zh, f, th, v, dh, m, n,

ng, l, r, w, y, h, iy, ih, eh, ae, aa, ah, ao, uh, uw, er, ax

The distance matrix provides us with all the information on
interrelation among the elements and enables us to cluster the el-
ements for visualization. Among some widely-used clustering al-
gorithms, Ward’s method was adopted in this work because the
author considers that the clustering criterion of the method is more
effective statistically than those of the others. A state-based matrix
and a phone-based one give us a state-based diagram and a phone-
based one, respectively. Phone-based distance is calculated, for
example, as averaged state-level distance between two phones.

Figure 2 shows an example of a phone-based tree diagram of a
GA speaker. While the top split of Halle’s tree in Figure 1 divides
phonemes into vocalic and non-vocalic ones, that of the bottom-
up tree does phones into vowels, nasals, liquids, and glides and the
others. Since the above four kinds of phones are well-known to
have much in common with regard to their articulatory and acous-
tic properties, the bottom-up tree is considered more reasonable
phonetically. Also at the other splits in Figure 2, as expected, pho-
netically good and valid clustering is seen.

3.3. Characteristics of the new representation

Since HMMs are trained purely based upon acoustic properties of
phones, it is quite natural that their interrelation gives us a phonet-
ically reasonable tree. Here, let us consider what kind of change
can be see in the tree structure by linearly transforming cepstrum
vector at time t, ct, in training data.

c′t = Act + b, (2)

where A and b are a constant matrix and a constant vector, respec-
tively. With this transformation, mean vector µ′ and variance and
covariance matrix Σ′ of c′t are represented using µ, Σ, A, and b.

µ′ = E(c′t) = Aµ + b (3)

Σ′ = E(c′t − µ′)(c′t − µ′)T = AΣAT (4)

Then, Equations 1, 3, and 4 lead to the following equality.

BD(µ′
u, Σ′

u, µ′
v, Σ′

v)

= BD(Aµu + b, AΣuAT , Aµv + b, AΣvAT )
= BD(µu, Σu, µv, Σv)

(5)

Bhattacharyya distance between two distributions is not changed
by any constant and linear transformation. This directly indicates
that any constant and linear transformation cannot change the dis-
tance matrix and its structure.

As is well-known, linear transformation of Ax+b is referred to
as affine transformation. In Euclidean space, affine transformation
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Fig. 2. An example of a phone tree diagram of a GA speaker
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changes a structure into another and the change is often classified
into several types. Matrix A realizes scaling, warping, or rotation
of a structure and also realizes their combination. Vector b realizes
shift of a structure. In Bhattacharyya space, since distance between
two elements is not changed by linear transformation, matrix A
and vector b correspond to rotation and shift, respectively, where
structure is not changed by any constant linear transformation.

What is acoustic-phonetic interpretation of Ax+b? Since ad-
dition of b corresponds to that of a log spectrum pattern to an orig-
inal pattern, b corresponds to multiplicative distortion caused by
differences in microphone, room, line, and so on. In speaker recog-
nition, a speaker is often modeled as a GMM, which is an average
pattern of log spectrum. This means that speaker individuality can
be partly modeled as b. What’s A then? In [4], it is proved that
any monotonously continuous frequency warping in spectrum do-
main can be theoretically converted into a constant A in cepstrum
domain. In speech recognition, the frequency warping of spec-
trum is often used to represent vocal tract length differences. This
directly means that A can simulate acoustic distortion caused by
vocal tract length differences and it implies that distortion caused
by physical growth of an individual as well as speaker differences
in size cannot be seen in the structure. A part of matrix space of A
corresponds to the frequency warping and other parts are expected
to give us some different functions. And any kind of A, if constant,
cannot change the structure.

In MLLR adaptation of acoustic models in speech recogni-
tion, multiple matrices are usually used for mixture-based bottom-
up clustering of triphone HMMs[5]. Triphones are trained with
a large amount of data in which different speakers read different
sentences. This implies that different parts of a triphone set have
different speaker individuality[6] and that this is why multiple ma-
trices are required. At least in MLLR adaptation of triphones in
HMM speech synthesis, some techniques are introduced to realize
even individuality in every part of a triphone set[6] and one or a
few matrices can be used for the adaptation effectively.

To sum up, speech events structurally represented by the pro-
posed method have no dimensions for static distortion inevitably
involved in production, encoding, transmission, decoding, and hear-
ing processes. The author supposes that if acoustic matching is
possible based on only the structural representation, without di-
rect use of phone models, it may realize the most stable and robust
speech application. But since the representation cannot provide us
with any absolute acoustic properties of phones, it cannot recog-
nize or synthesize even a single phone. What’s possible? In the
following section, the proposed method is applied to the applica-
tion area requiring the most stable technology, which is education.

4. APPLICATION OF THE NEW REPRESENTATION

4.1. Quantitative description of individual students

In pronunciation training, it is often said that no two students are
the same. Every student produces sounds of the target language
by his/her own way and it is desirable to instruct the individual
students after knowing what kind of states they are in. Even if
teachers have good knowledge of phonetics and phonology of the
target language, it is often impossible to describe students ade-
quately because, for example, there is no science such as Japanese
English phonetics or phonology. Some teachers are trying to solve
this problem with tools of acoustic phonetics. But what the tools
give is very noisy representation of speech in that many things ir-
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Fig. 3. An example of a phone tree diagram of a poor student

relevant to the proficiency are on the acoustic representation. Even
if they are not seen, the representation requires good knowledge
of acoustics and physics. Figure 3 shows an example of a poor
student in the proposed representation, where there is no noises
or acoustics. What can be seen there is quantitative dependency
of his/her pronunciation on their mother tongue. In the figure, the
well-known Japanese habits of English pronunciation are clearly
seen. Confusions of /r/&/l/, /s/&/th/, /z/&/dh/, /f/&/h/, /iy/&/ih/,
/v/&/b/, and so on are found. Mid and low vowels of English are
located very closer to each other because there is only one mid and
low vowel in Japanese. Schwa is closely located to the above vow-
els. These findings are just common belief and the analysis showed
that different students drew different trees. If distance measure is
defined adequately between two trees, 202 students in the database
can be clustered as their phones are clustered. Although the author
already did the clustering to define types of Japanese English, due
to limit of space, the types will be reported elsewhere.

4.2. Automatic estimation of the proficiency

Most of the previous studies of pronunciation proficiency estima-
tion did acoustic matching between native models and a student’s
utterances[7, 8]. In this case, since the matching is done with the
individual phone models, nobody cannot guarantee that the mis-
match problem will not occur. Actually, recent reports from teach-
ers say that machine estimation of the proficiency seems not reli-
able or pedagogically-sound enough[9]. The author supposes that
the most probable reason for that is the mismatch problem and ex-
pects that the proposed method can solve it effectively.

Before matching between a teacher’s structure and a student’s
one, characteristics of a single structure is described. If M points
are in N -dimensional Euclidean space as in Figure 4, the follow-
ing equation is true, where GP is a gravity center of {Pi}.s

1

M2

X
i<j

PiPj
2

=

s
1

M

X
i

PiGP
2

(6)

If Bhattacharyya distance (BD) is used for Euclid distance, the
above equation is not satisfied. But square root of BD satisfies the
equation approximately. Correlation of left and right quantities of
the equation in JE phones over the students was 0.997. This is why
square root of BD was used. Now, let us consider two structures.
If M points are phones in cepstral space with their distributions,
then the following equation is approximately true for JE phones.s
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Fig. 4. Two structures and their shift & rotation for fitting

Correlation was 0.999. Equations 6 and 7 lead to another equality.s
1

M2

X
i<j

(PiPj − QiQj)2 ≈
s

1

M

X
i

(PiGP − QiGQ)2 (8)

The right term is approximated to be average of cepstrum distances
between two corresponding phones of the two structures after shift
and rotation, where the two gravity centers are put at a position
and one of the two structures is rotated so that the

P |θi| (see in
Figure 4) should be minimized. The left term is Euclid distance
between two distance matrices by viewing a matrix as a vector. In
brief, Euclid distance between two matrices, structural distortion
henceforth, approximates cepstrum distance averaged over all the
corresponding phones of the two structures after full adaptation.

Figure 5 shows the structural distortion and the positional dis-
tortion, which is average of cepstrum distances with no shift or ro-
tation, for two cases. One is distortion between two GA speakers
(GA-GA) and the other is between a GA speaker and a Japanese
(GA-JE). In the left, only vowels are used and, in the right, all the
phones are used. In the vowel graph, while GA-JE and GA-GA
distributions are overlapped in the positional distortion, they are
clearly separated in the structural distortion. This was much to
be expected because the two kinds of distortion differ in whether
adaptation is done. In the other graph, even the structural distor-
tion shows less clear separation. This result implies some adequate
selection of phones or phone pairs should be done before calculat-
ing the structural distortion. It is easily expected that the selection
based on phone pairs will give finer definition of the distance mea-
sure because the number of phone pairs is much larger than that of
phones. The author supposes that the selection should depend on
application. For example, if automatic estimation of the pronunci-
ation proficiency is required, the selection should be done so that
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correlation between 5−tr (Teachers’ Rating, where 5 is the max-
imum score) and the structural distortion between students and a
teacher should be maximized. Figure 6 shows the results with very
high correlation between 5−tr and the estimated scores. Although
the author already did several experiments as for robustness im-
provement, due to limit of space, they will be reported elsewhere.

5. CONCLUSIONS

This paper proved that the universal and essential structure of speech
exists in pure acoustics of speech, where multiplicative and lin-
ear transformational distortion is removed completely and theoret-
ically. Then, the structural representation was applied to describe
individual language students quantitatively and estimate their pro-
ficiency successfully. Based upon only the new representation of
speech, i.e., no individual phone models, the author already did
clustering of the students to define types of JE and automatic gen-
eration of pedagogical instructions on which phone should be cor-
rected among others. The generation was based upon intelligibil-
ity criterion[10] not upon native-sounding criterion and the results
will be reported elsewhere with teachers’ comments on them.
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