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Abstract Speech communication consists of three steps: production,
transmission, and hearing. Every step inevitably involves acoustic distor-
tions due to gender differences, age, microphone- and room-related fac-
tors, and so on. In spite of these variations, listeners can extract linguistic
information from speech as easily as if the communications had not been
affected by variations at all. One may hypothesize that listeners modify
their internal acoustic models whenever extralinguistic factors change.
Another possibility is that the linguistic information in speech can be
represented separately from the extralinguistic factors. In this study, in-
spired by studies of humans and animals, a novel solution to the problem
of intrinsic variations is proposed. Speech structures invariant to these
variations are derived as transform-invariant features and their linguistic
validity is discussed. Their high robustness is demonstrated by applying
the speech structures to automatic speech recognition and pronunciation
proficiency estimation. This paper also describes the immaturity of the
current implementation and application of speech structures.

Keywords Speech Structures, Extralinguistic Features, Invariance, f -
divergence, ASR, CALL, Robustness

§1 Introduction
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Every normally developed individual shows an extremely robust capacity
for understanding spoken language. Even a young child can understand the
words of a caller on a mobile phone despite hearing the caller’s voice for only the
first time. The voices of some animated characters sound unrealistic because
they are artificially created using speech technologies, but children can easily
understand what they say. A TV show hosting the world’s tallest and shortest
adults demonstrates the ability of these individuals to communicate orally with
no difficulty, despite the largest possible gap in voice timbre between the two.
Why is our perception so robust? Linguistic messages in speech are regarded
as the information encoded in a speech stream1). What, then, is the human
algorithm for decoding this information so robustly2)?

Our perception is not only robust against speech variability but also
against variability in other sensory media. Psychologically speaking, robustness
of perception is called perceptual constancy. A visual image is modified in shape
by viewpoint changes but our perception remains constant. As for color, a flower
in daylight and the same one at sunset present us with objectively different color
patterns but we properly perceive the equivalence between them. When a man
and a woman hum a tune, the tones differ in fundamental frequency but we can
tell that the melody is the same. Male voices are deeper in timbre than those
of females but perception is invariant between a father’s “good morning!” and
that of a mother. Although the above stimuli are presented via different media,
all the variations are commonly caused by static biases.

In this paper, discussions of psychologists on perceptual constancy are
reviewed with respect to evolution and development. Following this review,
we describe our proposed theory of speech structure: a speaker-invariant con-
trastive and dynamic representation of speech. After that, we apply the struc-
ture to realize highly robust Automatic Speech Recognition (ASR) systems and
Computer-Aided Language Learning (CALL) systems.

§2 Nature of perceptual constancy
Psychologists have discovered that among different media a similar mech-

anism functions to cancel static biases and realize invariant perception3, 4, 5). The
left-hand side of Figure 1 shows the appearance of the same Rubik’s cube seen
through differently colored glasses6). Although the corresponding tiles of the two
cubes have objectively different colors, we label them identically. On the other
hand, although we see four blue tiles on the top of the left cube and seven yellow
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Fig. 1 Perception of colors with and without context6).

Fig. 2 A melody and its transposed version.
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Fig. 3 Tonal arrangement of the major key.

tiles on the right, when their surrounding tiles are hidden, we suddenly realize
that they have the same color (See the right-hand side of Figure 1). Different
colors are perceived as identical and identical colors are perceived as different.

Similar phenomena can be found in tone perception. Figure 2 shows
two sequences of musical notes. The upper corresponds to the humming of a
female and the other to the same melody hummed by a male. If listeners have
relative pitch and can transcribe these melodies, they convert the two melodies
into the same sequence of syllable names: So Mi So Do La Do Do So. The first
tone of the upper sequence and that of the lower are different in fundamental
frequency but listeners can name these tones as So. The first tone of the upper
sequence and the fourth of the lower are physically identical but the two tones
are identified as being different. Different tones are perceived as identical and
identical tones are perceived as different.

Researchers have found that the invariant perception of colors and tones
occurs through contrast-based information processing3, 4, 5). To some degree, this
invariant perception is guaranteed by the invariant relationship of the focused
stimulus to its surrounding stimuli. For individuals with relative pitch, a single
tone is difficult to name but tones in a melody are easy to identify and tran-
scribe. If a melody in a major key includes two tones that are three whole tones
apart in pitch (and possibly temporally distant), these tones must be Fa and
Ti according to the tonal arrangement (scale) of the major key (See Figure 3).
This arrangement is invariant against key changes and, using this arrangement
as a constraint, key-invariant tone identification is made possible.

As entomological studies have shown, invariant color perception occurs
in butterflies and bees7). In contrast, anthropologists have found that invariant
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tone perception is difficult even for monkeys8). It is not that monkeys cannot
transcribe a melody, but rather that they cannot perceive the equivalence be-
tween a melody and its transposed version8). Thus, invariant color perception
seems to have evolved much longer ago than invariant tone perception.

§3 Human development of spoken language
How do infants acquire the capacity for robust speech processing? Re-

cent research, especially in the field of artificial intelligence, has focused on
infants’ acquisition and development of cognitive abilities9, 10, 11) to realize ro-
bust speech processing on machines. One obvious fact is that a majority of
the utterances an infant hears come from its parents. After it begins to talk,
about a half of the utterances it hears are its own speech. It can be claimed
that the utterances an individual hears are strongly speaker-biased unless he or
she has speaking disabilities. Current ASR technology tries to solve the speech
variability problem by collecting a huge number of samples and often adapting
the resulting statistical models if necessary. We believe, however, that the prob-
lem should not be solved by extensive sample collection if a human-like speech
processor is the goal of research.

Infants acquire language through active imitation of their parents’ ut-
terances, called vocal imitation. But they do not impersonate their parents. A
question is raised: what acoustic aspect of the voices do infants imitate? One
may claim that infants decompose an utterance into a sequence of phonemes and
that each phoneme is reproduced acoustically. But researchers of infant studies
deny this claim because infants do not have good phonemic awareness12, 13).

An alternative answer, also derived from infant studies, involves a holis-
tic sound pattern embedded in an utterance12, 13), called word Gestalt14) or a
related spectral pattern15). This holistic pattern has to be speaker-invariant be-
cause, no matter who speaks a specific word to an infant, its imitative responses
are similar acoustically. Another question is then raised: what is the physical
definition of the speaker-invariant holistic patterns underlying individual utter-
ances? As far as we know, psychologists have yet to demonstrate a mathematical
formula. In this paper we describe our own proposal.

Vocal imitation is rare in animals16), and non-human primates scarcely
imitate the utterances of others17). This behavior can be found in only a few
species of animals: birds, whales, and dolphins. But there is a critical difference
between humans and animals. Animals’ imitation is basically acoustic imitation,
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t i m ef requency t i m ef requency
Fig. 4 /aiueo/s produced by a tall speaker

(above) and a short speaker (below).

Fig. 5 Jakobson’s invariant system

of French vowels and semi-vowels21).

similar to impersonation16). Considering monkeys’ lack of invariant tone percep-
tion, again, acoustic variability seems to be an insoluble problem for animals.

§4 Natural solution of speaker variability
As for speech, changes in vocal tract shape and length result in changes

of timbre. Basically speaking, dynamic morphological changes of the vocal tract
generate different phonemes acoustically. However, static morphological differ-
ences of the vocal tract among speakers cause speaker variability. Figure 4 shows
the same linguistic messages generated by a tall speaker and a short one.

Speaker difference is often modeled mathematically as space mapping
in studies of voice conversion. This means that if we can find some transform-
invariant features, they can be used as speaker-invariant features. Recently,
several proposals have been made18, 19, 20) but speaker variability was always
modeled simply as f̂=αf(f :frequency, α:constant). In this case the proposed in-
variance depends strictly on this simple model. Many studies of voice conversion
have adopted other sophisticated transforms, indicating that this simple model
will be inadequate in characterizing speaker variability. Further, we should note
that all these proposals have tried to find invariant features in individual speech
sounds, not in holistic patterns composed only of speech contrasts or relations.

As shown in 8), perceptual constancy of colors is found in butterflies.
As far as we know, however, no researcher has claimed that a butterfly acquires
statistical models of individual colors by looking at all the colors through thou-
sands of differently colored glasses. Further, naming individual colors (elements)
is not needed in order to perceive the equivalence between a flower in daylight
and the same flower at sunset. In contrast, the most popular method of acoustic
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modeling of conventional ASR is the statistical modeling of individual phonemes
(elements) using thousands of speakers (differently shaped vocal tubes). As we
discussed in Section 3, we consider this strategy to be unnatural and, if a human-
like speech processor is the goal, robust speech processing should be implemented
on machines based on holistic patterns composed of speech contrasts or relations.

A similar claim can be found in classical linguistics21). Jakobson has
proposed a theory of acoustic and relational invariance called distinctive fea-
ture theory. He repeatedly emphasizes the importance of relational, systemic,
and morphological invariance among speech sounds. Figure 5 shows his invari-
ant system of French vowels and semi-vowels. In a classical study of acoustic
phonetics, the importance of relational invariance was experimentally verified
in word identification tests22). It should be noted that Ladefoged discussed the
significant similarity between the perception of vowels and that of colors22). A
good survey of vowel perception based on relational invariance is found in 23).

Recently in 24), Hawkins proposed a memory-prediction theory to ex-
plain intelligence from the point of view of a neuroscientist. “I believe a similar
abstraction of form is occurring throughout the cortex. Memories are stored
in a form that captures the essence of relationships, not the details of the mo-
ment. The cortex takes the detailed, highly specific input and converts it to an
invariant form. Memory storage and recall occur at the level of invariant forms.”

From an engineering viewpoint, if a developed system works well for a
given task, a natural solution might not be needed. If one wants to develop not
only outwardly appearing but also internally human-like speech systems9, 10, 11),
however, we believe that he or she has to develop computational algorithms that
are in accordance with findings in the human sciences. In the following section
we describe our proposal, but can hardly claim that this is the best or only
solution. After demonstrating some experimental results, we also describe the
immaturity of the current implementation of speech structures.

§5 Mathematical solution of the variability
In 25), we proved that f -divergence26) between two distributions is in-

variant with any kind of invertible and differentiable transforms (sufficiency).
Further, we also proved that features, which are invariant with any transform,
have to be, if any, f -divergence (necessity). f -divergence is a family of divergence
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Fig. 6 Invertible deformation of shapes.

p1 and p2 are transformed to P1 and P2.

Fig. 7 Complete topological invariance. An f -
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Fig. 8 Utterance structure composed only of f -divergences. A feature trajectory is converted

into a distribution sequence. From the distributions, an invariant distance matrix is formed.

measures and it is defined as

fdiv(p1, p2) =
∮

p2(x)g
(

p1(x)
p2(x)

)
dx, (1)

where g(t) is a convex function for t > 0. If we take t log(t) as g(t), fdiv becomes
KL-divergence. When

√
t is used for g(t), − log(fdiv) becomes Bhattacharyya

distance. Figure 6 shows two shapes and they are deformed into each other
through an invertible and differentiable transform. An event is described not as
point but as distribution. Two events of p1 and p2 in A are transformed into P1

and P2 in B. Here, the invariance of f -divegence is always satisfied25).

fdiv(p1, p2) ≡ fdiv(P1, P2) (2)

Figure 7 shows a famous example of deformation from a mug to a dough-
nut, often used to explain topology, where two shapes are treated as identical if
they can be transformed continuously. Suppose that a number of events exist as
distributions on the surface of the mug. When the mug is deformed in varying
degrees into the doughnut, f -divergences between any event pair cannot change.
An f -divergence-based distance matrix is completely invariant quantitatively.

In our previous studies25, 27, 28, 29), we have been using the Bhattacharyya
distance (BD) as our f -divergence. Figure 8 shows the procedure whereby an
input utterance is represented only by BDs. The utterance in a feature space
is a sequence of feature vectors and it is converted into a sequence of distribu-
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Fig. 10 Structure-based isolated word recognition.

tions, i.e., automatic segmentation. Here, any speech event is characterized as a
distribution. The BDs are then calculated from every distribution pair, includ-
ing temporally distant ones, to form a BD-based matrix. As a distance matrix
in a Euclidean space can specify a unique shape, we call the matrix a speech
structure. Here, we should note that velocity vectors, relative changes at each
point in time (See the right-hand side of Figure 8), are not good candidates for
speaker-invariant features. The reason is explained in the following section.

Once two utterances are represented as two speech structures, how does
one calculate the similarity between the two? We have already proposed a very
simple answer28, 29). Since a distance matrix is symmetric, we can form a vec-
tor composed of all the elements in the upper triangle of the matrix. This
vector is henceforth called a structure vector. As shown in Figure 9, similar-
ity between two structures is defined as the minimum summation of distances
between the corresponding two points (events) after one structure is shifted
and rotated so that the two structures overlap as completely as possible. The
Euclidean distance between the two structure vectors can approximate the min-
imum summation28, 29). In a cepstrum space, rotation approximately represents
cancelation of differences in vocal tract length30) and shift cancels microphone
differences. This means that structure matching will give us acoustic similarity
between two utterances after global speaker and microphone adaptation. But
no explicit adaptation is needed because adaptation is implicitly performed dur-
ing the structure matching process. In other words, structure matching is a
computational shortcut. Chemically speaking, this matching scheme is called
Root Mean Square Deviation (RMSD)31), where a distance matrix represents
the shape of a molecule. RMSD is often used to calculate structural differ-
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ences between two molecules without explicit estimation of a mapping function
to transform one molecule into the other. If absolute positions of individual
events in a (parameter) space are used as observation and model parameters,
however, the mapping function must always be estimated. As far as we know,
conventional adaptation methods in ASR, such as Maximum Likelihood Linear
Regression (MLLR), are based on this strategy. This is why acoustic models
must be updated whenever extralinguistic or environmental factors change.

Figure 10 shows the basic framework of isolated word recognition with
speech structures. To convert an utterance into a distribution sequence, the Max-
imum a Posteriori (MAP)-based training procedure of Hidden Markov Models
(HMMs) is adopted. Then, the BDs between every distribution pair are ob-
tained. After calculating the structure, absolute properties such as spectrums
are discarded. The right-hand side of the figure shows an inventory of word-based
statistical structure models (Gaussian models) for the entire vocabulary. The
candidate word showing the maximum likelihood score is a result of recognition.

§6 Isolated word recognition

6.1 Two problems and their solutions
The proposed speech structure is invariant with any kind of transforms.

This had led us to expect that two different words could be evaluated as identical
and our preliminary experiments showed that this expectation was correct. As
both speaker and phoneme differences are basically differences in timbre, it is
not complete invariance but adequately constrained invariance that is needed.
We have to strike the proper balance between invariance and discrimination.

To realize this balance, we have modeled the variability due to vocal tract
length differences mathematically and, based on the model, we have introduced
a new technique. Speech modification due to vocal tract length difference is
often modeled as frequency warping32, 33, 34). In 32, 33), it was shown that this
warping can be modeled in the cepstrum domain by multiplying cepstrum vector
c by matrix A (c′=Ac). BD is completely invariant with any kind of A and
this invariance is too strong. A in 32, 33) is a band matrix and our goal is the
invariance of only band matrices. Here, we divide a cepstrum stream into two
substreams, where ci,j means a substream from i-th to j-th dimension.(

c′1,n

c′n+1,N

)
=

(
A11 A12

A21 A22

)(
c1,n

cn+1,N

)
+

(
b1,n

bn+1,N

)
, (3)
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where b is a static bias vector representing microphone difference. If we assume
independence between the two substreams in speech modification, A12 and A21

are zero matrices. If we consider more than two substreams, A more closely
resembles a band matrix. Speech modification with a band matrix approximately
indicates that each cepstrum substream is modified reasonably independently of
the others. We expect that adequately constrained invariance can be obtained
by structure matching after dividing a stream into multiple substreams. We call
this technique Multiple Stream Structuralization (MSS).

If a three-dimensional stream is divided into two substreams, the result-
ing substructures are shown in Figure 11. Structure matching is performed in
each subspace. Figure 12 shows a general MSS procedure. An input utterance
is converted into an HMM, a set of distributions. For the mean vector of each
distribution, w adjacent cepstrums form a subvector and w adjacent ∆cepstrums
form another. Here, we have S subvectors totally. One subvector and that ad-
jacent to it partially overlap (See Figure 12). Using these subvectors and their
corresponding variances, a substructure is constructed in each subspace. The
final similarity score is obtained by summing up the scores in the subspaces.

The second problem is that the parameter dimension is increased with
O(n2), where n is the number of distributions in an utterance. In this case, the
number of edges (contrasts) in a structure becomes nC2 (See Figure 8). Then,
the total number of dimensions is SnC2. To simultaneously reduce the number of
dimensions and increase discriminability, a widely used method is adopted here.
Linear Discriminant Analysis (LDA) is introduced twice. Figure 13 demon-
strates the procedure. After MSS, LDA is carried out for each substream (sub-
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structure), which is the first LDA. Wi(i=1...S) are its transform matrices. Then,
all the transformed substructure vectors are concatenated to form a single inte-
grated vector. This vector is transformed again with Wall, which is the second
LDA. The resulting vector is used for matching with pre-stored templates.

6.2 Two word sets used in the experiments
Two word sets were prepared. One was an artificial word set, where

each word consisted of a five-vowel sequence such as /eoiau/. Since Japanese
has only five vowels, the vocabulary size was 120 (=5P5). The other set was
a Japanese phoneme-balanced natural word set35), which is often used in the
Japanese ASR community to verify the effectiveness of new techniques. The
word length in terms of phonemes varied from 3 to 10 and the vocabulary size
was 212. Considering that vowel sounds are more speaker-dependent than some
consonant sounds such as unvoiced plosives and fricatives, it was reasonably
expected that our proposal would be more appropriate for the first word set.

With matrix A, various kinds of non-linear frequency warping can be
applied to the word utterances. Considering the fact that the tallest adult in
the world is 257 cm high and the shortest is 74 cm high, the warping was done
to cover this range and these warped data were used for testing the proposed
technique. In real situations, however, we would hardly see such tall or short
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Table 1 Acoustic analysis conditions.

window 25 ms length and 10 ms shift
parameters FFT-CEP(1 to 16) + ∆CEP(1 to 16) + ∆Power
distribution 1-mixture Gaussian with a diagonal matrix

20 distributions for each vowel word (n=20)
25 distributions for each balanced word (n=25)

estimation MAP (for extracting a structure from an utterance)
ML (for training an HMM from multiple utterances)

speakers, although it might not be uncommon to hear them on television. As
described in Section 1, the voices of some animated characters are created by
transforming real human voices. Although they sound unrealistic as human
voices, children can easily understand what the characters are saying. How does
this compare to the current speech recognition systems?

6.3 Experimental conditions
The acoustic analysis conditions are shown in Table 1. For comparison,

word-based HMMs were built with the same training data. As shown in Figure 8,
the structures captured only the relational features of speech contrast but the
HMMs captured mainly absolute spectrogram characteristics. In the latter, rel-
ative features of ∆cepstrums, which are velocity vectors in the cepstrum space,
are often used in addition (See the right-hand side of Figure 8). ∆cepstrums are
invariant with static bias vector b in Equation (3), meaning that they are invari-
ant with microphone differences. However, we mathematically showed in 30) that
A in 32, 33) is approximated as a rotation matrix. This claims that differences in
vocal tract length change the direction of a timbre trajectory in Figure 8. Ex-
perimental verification of this claim was performed in 30). This is why we stated
in Section 5 that ∆cepstrums are not good invariant features.

FFT-cepstrums, not Mel-Frequency Cepstrum Coefficients (MFCC), were
used here for two reasons. One is that analytical matrix representation of fre-
quency warping was shown in 32, 33) using FFT-cepstrums. The other is that a
Mel transform is a frequency warping and corresponds to shortening of the vocal
tract. One would expect this effect, then, to be cancelled due to the invariance
of structures. Some characteristics of MFCC, such as the use of overlapped tri-
angular windows and DCT, may improve the performance. However, since what
we want to discuss here is the performance difference between absolute features
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and relational ones used to build statistical models, we adopted FFT-cepstrums.
Both for structures and HMMs, the number of distributions, n, was set

to 20 for each vowel word and 25 for each balanced word. For the vowel words,
four males and four females were used for training and a different four males and
four females were for testing. For the phoneme-balanced words, 15 males and
15 females were used for training and another 30 speakers were for testing. For
the former set, each speaker uttered the word set five times and each reference
structure and each HMM were trained with 40 samples. For the latter set, each
speaker uttered the word set once and each template was built with 30 samples.

6.4 Experimental results
Figures 14 and 15 show the performances with vowel words and bal-

anced words. w is the width of a subvector (See Section 6.1) and it varies from
1 to 16. The X-axis represents warping parameter α32, 33). Positive and nega-
tive values of α indicate shortening or lengthening of the vocal tract length,
respectively. The length is approximately halved when α=0.4 and doubled
when α=−0.4. HMM in the figures signifies the performance of the word-based
HMMs trained using the same data (original utterances) that were used in train-
ing the structures. Matched indicates the performance of 17 sets of word-based
HMMs. They were separately trained using the training data warped with each
value of α and tested with the testing utterances warped with the same α value.
In other words, matched shows the performance with no mismatch.

We had expected that if the implicit adaptation mechanism worked well
in structure matching, the performance of a single set of structures would be
comparable to that of the 17 matched sets of HMMs. In the case of vowel
words, we can say that our expectation was totally correct. The performance
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of structures with w=16 is comparable to or even higher than that of the 17
matched sets of HMMs. The improvement over the matched HMMs is thought
to be due to the LDA-based parameter reduction. Even if LDA is used with
HMMs, however, drastic improvement in robustness is difficult to realize because
the training data do not include a very wide variety of speakers.

We found that w worked to strike a balance between invariance and
discrimination. As expected in Section 6.1, larger values of w tended to enhance
invariance and reduce discrimination. The performance of w=1 in the matched
condition (α=0) was better than that of w≫1. However, the performance of
w=1 in the mismatched conditions was much worse that that of w>1.

In another experiment, speaker-independent tied-state triphone HMMs,
which were trained with 4,130 adult speakers, were tested with the utterances
warped using α=0.3. This triphone HMM set is distributed by the Japanese
academic ASR community and often used as the baseline triphone set36). In
contrast to the previous experiments, MFCCs and Cepstrum Mean Normaliza-
tion (CMN) were used for acoustic analysis because the triphone HMMs used
them. Using this HMM set, an isolated word recognition system was built using
a dictionary of the 120 words mentioned above. The recognition performance
was 1.4%, lower by far than that of the structures (91.0%, w=16), which were
trained with only eight adult speakers. Although the triphone set is distributed
as a speaker-independent model set, it did not work at all with the data warped
at α=0.3. It is true that these utterances do not sound like real human voices but
rather like the voices of animated characters such as small animals or insects. As
described in Section 1, humans, even children, can understand their utterances
easily, but it seems that the current speech recognition system cannot at all.
If the HMMs are adapted and modified adequately using some warped utter-
ances, as indicated in Figure 14, the same performance as that of the structure
models should be obtained because, in a sense, the proposed method resembles
the conventional methods. The difference lies in which adaptation strategy to
adopt, implicit or explicit. In the former, no additional processing is needed
for a new environment, while in the latter, modification of model parameters is
always required for new environments. Technically speaking, we consider that
this difference is very critical and significant.

In the balanced set, shown in Figure 15, the performance of structures
was worse than that of HMMs in the matched condition (α=0). We consider that
the use of a constant number of distributions (n=25) is inadequate for words
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consisting of different numbers of phonemes. However, the current implementa-
tion of structure matching allows us only to compare two utterances composed
of the same number of distributions. Further, as we expected, since unvoiced
consonants are less speaker-dependent, the results imply that absolute spectrum
features are necessary to represent these sounds. To solve these two problems,
we tentatively propose combining relational features with absolute ones to en-
hance speech structure and make possible the flexible alignment between two
structures. We suggest that interested readers should refer to 37).

Even with the current implementation of speech structures, however, in
the mismatched conditions a high robustness was shown with larger values of
w (w=10, 13). We found again that w functioned to balance invariance and
discrimination. As noted before, speaker difference and word difference are in a
large part attributable to spectrum difference.

Structure-based ASR is also possible with domains other than cep-
strums. For example, spectrum-based structures are feasible because a spectrum
envelope is obtained by linearly transforming cepstrums, i.e., FFT. We consider
that spectrum-based MSS structures are similar to modulation spectrums38) and
RelAtive SpecTrA (RASTA)39). All of these capture only the dynamic aspect of
speech but our structure uniquely grasps it in a mathematically speaker-invariant
way. This invariance is obtained by removing the directional features of a speech
trajectory because they are strongly speaker-dependent30) and by modeling only
the resulting speech contrasts, including temporally distant ones (see Figure 8).

§7 Pronunciation proficiency estimation

7.1 Urgent requirement for highly robust technologies
One of the main ASR applications is CALL, where pronunciation errors

are detected or pronunciation proficiency is estimated automatically for foreign
language learners using ASR technologies40, 41). English education in Japan is
supposed to encounter a turning point soon. The Japanese government decided
to introduce oral English communication lessons in every public primary school
starting in 2011, but we do not yet have a sufficient number of English teachers.
The government expects class teachers, many of whom did not receive an edu-
cation adequately preparing them to teach English, to play an important role
in these lessons. Given this situation we anticipate that various technical solu-
tions may be introduced to classrooms. Automatic estimation of pronunciation
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proficiency will be one of the key technologies, and it requires high robustness
because users include adult (tall) teachers and young (short) children.

7.2 Use of speech structures as pronunciation structures
The assessment of each sound instance in an utterance can be viewed

as a phonetic assessment and that of the entire system of the instances can be
regarded as a phonological assessment. In the former, the question is whether
each sound has the proper acoustic features, while in the latter, it is whether an
adequate sound system underlies a learner’s pronunciation. Jakobson, who pro-
posed a theory of relational invariance21), claimed that in language acquisition,
children acquire not individual sounds but the entire sound system.

In implementing machine-based phonological assessment, we have al-
ready applied speech structures to the automatic assessment of English vowels
produced by learners. For example in 42, 43), from the utterances of 11 English
monosyllabic words, each including one of the 11 American English monoph-
thongs, the vowel structure of a learner was calculated. The structure contains
almost no extralinguistic features and characterizes the accentedness of that
learner’s pronunciation well. We should note that with only a vowel struc-
ture (distance matrix), it is impossible to estimate the spectrum envelope pat-
tern for the individual vowels. On the contrary, the vowel structure could be
used effectively for pronunciation error detection and pronunciation proficiency
estimation42, 43). Further, the pronunciation structures successfully made it pos-
sible to classify learners not based on their gender and age but based on their
foreign accentedness43). In this paper, we examine experimentally the robustness
of the structure-based proficiency estimation against large speaker variability.

7.3 Experimental conditions
Our phonetic assessment method adopted Goodness Of Pronunciation

(GOP), which was originally proposed in 41) and is widely used today. By using
speaker-independent phoneme HMMs, phoneme-based GOP is calculated as the
posterior probability of the intended phonemes given input utterances.

GOP (o1, ..., oT , p1, ..., pN ) = log(P (p1, ..., pN |o1, ..., oT ))

≈ 1
N

N∑
i=1

1
Dpi

log

{
P (opi |pi)∑
q∈Q P (opi |q)

}
≈ 1

N

N∑
i=1

1
Dpi

log
{

P (opi |pi)
maxq∈Q P (opi |q)

}
(4)

T is the length of a given observed sequence and N is the number of the intended



Speech Structure and Its Application to Robust Speech Processing 17

Distributions

(states)

Utterances

Feature vector 

sequences

Distributions

(states)

Utterances

Feature vector 

sequences

Sub-structure Sub-structure

This was easy for us,,, This was easy for us,,,

Structure Structure

Normalization

A teacher A student

Selection of state pairs

Fig. 16 State-based sub-structure extraction.

From a learner’s speaker-dependent HMMs, ad-

equate state pairs are selected.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

C
o

rr
e

la
ti
o

n
 c

o
e

ff
ic

ie
n

ts

®

A single teacher’s structure

20 teachers’ HMMs (GOP)

Warping parameter

Fig. 17 Correlations between human and

machine scores calculated using acoustically

warped utterances.

phonemes. opi is a speech segment for pi obtained by forced alignment and Dpi

is its duration. {op1 ...opN } correspond to {o1...oT }. Q is the phoneme inventory.
For phonological assessment, we used pronunciation structure analysis42, 43).

By comparing a learner’s structure with that of a teacher (See Figure 9), the
pronunciation proficiency of that learner is estimated. In 42, 43), after train-
ing speaker-dependent vowel HMMs for each learner, a vowel-based structure
was built individually. In this paper, after training HMMs of all the English
phonemes, state-based substructures were calculated through adequate selec-
tion of HMM state pairs. Figure 16 displays how to extract a pronunciation
substructure from a teacher or learner’s utterances. As explained shortly, set-6
of the English Read by Japanese (ERJ) database44) was used to evaluate the
performances of the GOP and the structure. Using the other seven sets of the
database, selection of state pairs had been performed incrementally and greedily
so that the correlation between human and machine scores was maximized. Us-
ing the optimal definition of the substructure, the Euclidean distance between
a learner’s substructure and that of a teacher was calculated and its negative
value was used as a structure-based proficiency score. MSS was not done here.

The ERJ contains English sentences read aloud by 200 randomly se-
lected Japanese university students (100 males and 100 females) and the same
sentences read aloud by 20 native speakers of American English. The database
also contains proficiency scores for the 200 students as rated by five native teach-
ers of American English. As we described above, the pronunciation proficiency
of 26 learners of set-6 was estimated using the two methods. Each learner read
common 75 sentences. Two types of the machine scores, the GOP and the struc-
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ture, were compared with the proficiency scores as rated by the five teachers. For
estimating GOP, speaker-independent monophone HMMs were trained using all
the 20 native speakers, while for structures, a pronunciation structure of M08 (a
male native speaker) was used as a model structure. As in Section 6, frequency
warping was also performed to simulate both tall and short learners.

Unlike previous word recognition experiments, MFCC (1 to 12), ∆MFCC
(1 to 12), and ∆Power were used as acoustic features for both methods of the
GOP and the structure. Frame length and shift were the same as in Table 1.

7.4 Experimental results
Figure 17 shows the correlations between the teachers’ scores and the

two types of machine scores. The X-axis represents warping parameter α applied
only to testing utterances. In the figure, two speech segments of α=±0.3 are
shown. Frequency warping resulted in a drastic acoustic modification. Despite
it, extreme robustness of the structure is shown. On the other hand, extreme
weakness of the GOP is obviously indicated at the same time. We can say that
even a single teacher’s structure can be used effectively for learners of any size.

As GOP is based on posterior probability, it possesses the inherent func-
tion of canceling the acoustic mismatch between teachers’ HMMs and learners’
utterances. But this function only works when forced alignment (the GOP nu-
merator) and continuous phoneme recognition (the GOP denominator) perform
well. With a large mismatch, however, these processes will probably fail. To
avoid this, teachers’ HMMs are often adapted to learners. If one wants to pre-
pare the most suitable HMMs to estimate the proficiency of a specific learner, one
has to train them with that learner pronouncing the target language correctly.

This technical requirement leads us to consider that GOP might have
to stand for not Goodness Of Pronunciation, but Goodness Of imPersonation,
which quantifies how well a learner can impersonate the model speaker. But
learning to pronounce is not learning to impersonate at all. No male student tries
to produce female voices when asked to repeat what a female teacher said. No
child learner tries to produce a deep voice to repeat what a tall male teacher said.
If Jakobson’s claim is correct, a learner extracts a speaker-invariant sound system
underlying a given utterance and tries to reproduce that system orally. But the
inevitable difference in size and shape of the vocal organs between a learner and
a teacher has to result in acoustic differences between their utterances. However,
learning to pronounce is not affected at all by these differences.
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§8 Discussion and conclusions
In this paper, we first reviewed psychologists’ consensus on perceptual

constancy and then discussed the evolutionary and developmental mechanism
underlying the acquisition of perceptual constancy by referring to old and new
findings in evolutionary anthropology and developmental psychology. Consider-
ing these discussions, a new framework of speech representation, called speech
structure, was proposed, wherein an utterance is represented only with speaker-
invariant speech contrasts. The invariance of speech contrasts is based on f -
divergence, which is mathematically guaranteed to be invariant with any kind
of invertible transforms. The speech structure was applied to ASR and CALL
and its high robustness against speaker variability was successfully verified.

For ASR applications, adequately constrained invariance could be achieved
using MSS. With it, the utterances warped by band matrices were recognized
correctly with no explicit model adaptation. However, one of the two recognition
tasks, vowel permutation, was artificial and the speaker variability was simulated
variability. Evaluation of the proposed method using real data is needed to build
real-world applications. With this goal, as described in Section 6.3, we are ten-
tatively enhancing the speech structure. Further, as part of our future work we
are planning to generalize MSS. The adequately constrained invariance realized
in this paper depends on the form of A, i.e., band matrices. If real speaker vari-
ability is better modeled using a different finite set of transforms, we must derive
the adequately constrained invariance for them. Mathematically speaking, if the
constrained invariance can be obtained for a given arbitrary set of transforms, we
expect that it can be applied directly to processing of media other than speech.

For CALL applications, not only vowel sounds but also consonant sounds
were used and a new technique of substructure formation was proposed to im-
prove the robustness. This method did not involve MSS. Although the data used
in the experiment were derived from actual learners, speaker variability was cre-
ated artificially, again using A. We consider that evaluation of the proposed
method using actual children’s data is a necessary prerequisite to introducing
our CALL systems to classrooms.

To conclude this paper, we want to emphasize again that we are aiming
at building human-like speech processors. To this end, technically speaking, we
have proposed a completely different framework of speech representation and
acoustic matching. This paper focused on the difference in vocal imitation be-
tween animals and humans. Animals’ imitation is acoustic in nature whereas hu-
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mans reproduce an underlying pattern embedded in a given utterance. Although
the following description may be out of the scope of this paper, we found that,
in some cases, acoustic imitation becomes the default strategy of humans’ imi-
tation. This performance can be found in severely impaired autistics45, 46) and,
in this case, the normal acquisition of speech communication becomes difficult.
Prof. Grandin, a professor of animal sciences who is herself autistic, described
the similarity in information processing between animals and autistics47). An
autistic boy wrote that he could understand what his mother was saying but it
was difficult for him to understand others48). His mother said that it seemed
difficult for him to understand her on a telephone line. Looking at Figures 14
and 15, we can find a behavioral similarity to the HMM performance without
adaptation, i.e., absolute processing. In this paper we explained our proposal to
build human-like speech processors by referring to human factors from a broader
viewpoint of human sciences. Although our understanding of humans may still
be immature, we believe that the target processors are reasonably impossible to
build without aiming for a comprehensive understanding of humans.
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