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Cognitive Media Processing @ 2015

Menu of the last lecture

More on details of acoustic phonetics (continued)
Characteristics of human hearing
Fundamental frequency and pitch again
Fourier analysis of speech signals
Simple hearing tests

Technology for acoustic analysis of speech
Source-filter model of speech production S(w) = G(w)H (w)R(w)
Cepstrum method to separate source and filter
Advanced analysis tool of STRAIGHT
Some morphing examples
LPC, PARCOR, and the shape of a vocal tube
Spectrums/waveforms of various language sounds

Vowels, semivowels, liquids, nasals, voiced fricatives, unvoiced fricatives, glottals,
voiced plosives, unvoiced plosives, voiced affricatives, and unvoiced affricatives
Speech recognition as spectrum reading

Summary




Spectrum to spectrum envelope

® From spectrums to spectrum envelopes
e log-amplitude spectrum -> smoothing -> spectrum envelope

¢ Humans’ insensitivity to pitch differences when perceiving phonemes.

e /a/ with high tone and /a/ with low tone are perceived to be of the same class.
e Separation of pitch (fundamental frequency) can be done by spectrum smoothing.

_ |

Insensitivity to
pitch differences

phase
characteristics l
speech source
waveforms _ characteristics
amplitude

characteristics

filter
characteristics




Modeling of speech production

e Mathematical modeling of speech production -- source & filter model --
e Linear independence between source and filter
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Cognitive Media Processing @ 2015

Mathematical modeling of speech production -- source & filter model --

Separation between the spectrums of source and filter
fine structure of the spectrum

| | \ the spectrum of speech
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Extraction of spectrum en

e Cepstrum method
e Windowing + FFT + log-amplitude --> a spectrum with pitch harmonics

e Smoothing (LPF) of the fine spectrum into its smoothed version
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STRAIGHT [Kawahara’06]
High-quality analysis-resynthesis tool

Decomposition of speech into
Fundamental frequency, spectrographic representations of power, and that of periodicity

High-quality speech morphing tool

input Y periodicity map ) A per|0d|C|ty map resynthesized
speech \C spectrogram ) Mo ( spectrogram )I speech

\( T-F coordinate ) T-F coordinate )/

Spectrographic representation of power

FO adaptive complementary set of windows and spline based optimal smoothing
Instantaneous frequency based FO extraction

With correlation-based FO extraction integrated
Spectrographic representation of periodicity

Harmonic analysis based method




Examples of speech morphing

9 Z (Ilove you in Japanese) | T A (I'm sorry in Japanese) \ Iloveyou (74 57 2-—)

=Y I ZEFHILTRIAET IV,

n EEED hO—ILLTHTSES W,
pleased 0%

Move the cursor and click the mouse to
control the "emotions”

sad 100%

YSTRAICHT" Auditory morphing by Hideki Kawahara(Wakayama University/ATR) Interface designed by Takashi Yamaguchi
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LPC to vocal tract area function

e {ax} to the area function of the vocal tube.
e LPC coefficients are transformed into PARCOR
(PARtial auto-CORrelation) coefficients.
o PARCOR coeff. are transformed to reflection
coefficients between two consecutive short tubes.
e Finally PARCOR coefficients are related to the

cross-sectional area of each short tube. e
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~ Cognitive MediaProcessing @2015
Spectrum reading

® What are these?
e Hint : they are numbers.

: : t
.Time: 0.3248 Freq: 0.00 E|[Time: 0,3232 Fredq: 0.00 Vvalue:

::L]iur‘nu!
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e This is the task that is done by a speech recognizer.
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Title of each lecture i
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OSpeech communication technology - speech recognition -
Speech communication technology - speech synthesis -

Theme-3

A new framework for “human-like” speech machines #1
A new framework for “human-like” speech machines #2
A new framework for “human-like” speech machines #3
A new framework for “human-like” speech machines #4
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Cognitive Media Processing @ 2015

Today’s menu

e Fundamentals of statistical speech recognition
e Acoustic models for speech recognition

® From word models to subword models

® Speech recognition using grammars

¢ A small demo of automatic broadcast captioning

e Recommended books



Waveforms --> spectrums --> sequence of feature vectors

|Log Spectral Magnitude
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Cognitive Media Processing @ 2015
Difficulty of ASR

e Task of Automatic Speech Recognition (ASR)
e Automatic estimation of what is said by any speaker

e Determination of the word sequence of an utterance of any speaker
o Input: spectrum sequence
e Qutput: word sequence

e Acoustic difficulty of ASR

e Alarge acoustic diversity of one and the same linguistic content, e.g. word
e Factors of the diversity: speaker identity, age, gender, speaking style, channel, line, etc.
e Not explicitly represented in the written form of language.

e Linguistic difficulty of ASR
e We’'re not speaking like the written form of language.

e How to characterize word sequences in naturally and spontaneously generated speech?
e How to treat ungrammatical utterances, word fragments, filled pauses, etc ?
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A well-known strategy for diversity

e Statistical framework of ASR
e Solution of argmax_{w} P(w|o)
e P(w): prior knowledge of what kind of words or phonemes are likely to be observed.

e P(w|o): conditional probability of word observation, given acoustic observation of o.
e (specific) o -->wl, w2, w3, ...? o0-->pl, p2, p3,...?
e Data collection is very difficult to estimate P(w|o) directly.

e Use of the Bayesian rule

" plwjo) = P09 _ Pllw)Pw) __ Plojw)P(w)
P) ¥, Pl,w) %, Polw)Pw)

e The denominator is independent of w.

e Maximization of P(w|o) in terms of w is equal to that of P(o|w)P(w) ( =P(o,w) )
e Solution of argmax_{w} P(o|w) P(w)

e P(w): can be estimated from a large text corpus.

e P(o|w): conditional probability of acoustic observation, given intended content of w.
e (specific) w --> 01, 02, 03, ...? p-->01, 02,03, ...?
e This data collection is possible by asking many speakers to say w or p !!
e P(o|w): acoustic model, P(w): linguistic model
e Separate two models and a program that can search for the word sequence that maximizes P(o,w)




Waveforms --> spectrums --> sequence of feature vectors

arg mgxP(wl, W,y eeey WN |01 eeey Oy oeey OT) =
arg max P(o1,...,0¢, ..., op|wy, wa, ..., wn ) P(wy, wa, ..., wN)

O : cepstrum vector
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Cep. distortion and DTW

e Cepstrum vector = spectrum envelope

% ME(dB)

&1 % (Hz)
® 2 cepstrum vectors always satisfy the following equation.
® log|Sn|, log|Tn|: 2 spectrums
e log|S'n|, log|T’n|: 2 spectrum envelopes that are characterized by M cepstrums.
e Euclid distance of cepstrums has a clear physical meaning.

D, = (1og\5;| - log!Sn\) — (log\Tél —10g|Tn\)

N—-1
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Cep. distortion and DTW

e Dynamic Time Warping
e Temporal alignment between two utterances of the same content

e Temporal alignment between two utterances of different contents
¢ Finding the best path that minimizes the accumulated distortion along that path.
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e Local distortion: d(fi,g;)= euclid distance of the corresponding two cepstrum vectors.
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~ Cognitive MediaProcessing @2015
Cep. distortion and DTW

e Total distortion accumulated up to point (i,)) = D(i,))

e d(i,]) = local distortion (distance) between fi and g;.
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Today’s menu

e Fundamentals of statistical speech recognition
e Acoustic models for speech recognition

® From word models to subword models

® Speech recognition using grammars

¢ A small demo of automatic broadcast captioning

e Recommended books
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A well-known strategy for diversity

e Statistical framework of ASR
e Solution of argmax_{w} P(w|o)
e P(w): prior knowledge of what kind of words or phonemes are likely to be observed.

e P(w|o): conditional probability of word observation, given acoustic observation of o.
e (specific) o -->wl, w2, w3, ...? o0-->pl, p2, p3,...?
e Data collection is very difficult to estimate P(w|o) directly.

e Use of the Bayesian rule

" plwjo) = P09 _ Pllw)Pw) __ Plojw)P(w)
P) ¥, Pl,w) %, Polw)Pw)

e The denominator is independent of w.

e Maximization of P(w|o) in terms of w is equal to that of P(o|w)P(w) ( =P(o,w) )
e Solution of argmax_{w} P(o|w) P(w)

e P(w): can be estimated from a large text corpus.

e P(o|w): conditional probability of acoustic observation, given intended content of w.
e (specific) w --> 01, 02, 03, ...? p-->01, 02,03, ...?
e This data collection is possible by asking many speakers to say w or p !!
e P(o|w): acoustic model, P(w): linguistic model
e Separate two models and a program that can search for the word sequence that maximizes P(o,w)
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Markov Process

P(xn‘xn—lv T 7371) — P($n|$n—1)

« Signal at t = n depends only on the previous
signal (t=n-1).

e If signal att = n-1 is known, signals att < n-1
have no effect on the next signal at t = n.

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Hidden Markov Process

transition
—Q

state
P(on| wp_1,-2p )=Planl  Sp )
previous observations current state |

Observation sequence : z{, z9, -, ap, - -
(Hidden) state sequence : Sy, S5,---,Sp, -

e Previous observations cannot determine the current state uniquely.

» Signals (features) are observed but states are hidden..

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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HMM as generative model

CLOSURE BURST RELEASE VOWE

Probabilistic generative model

State transition is modeled as transition probabillity.
Output features are modeled as output probability.

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Parameters of HMM

transition
'O—0O

State

e Transition prob. : P(si,1|s; = i) = {a1;, agi, ..., aji, ..., asi}

e Output prob. : P(o|s; = i) = b;(0) = N(0; i, %)
Forward prob.
a;(t) = Ploy, -+ ops(t) =4IM) = Sa;(t—1)az;bi(of)

1
Backward prob.

Bj(t) = Plogy1,- - orls(t) = 5. M) = Sajbi(op1)0(t + 1)

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Output probability of observation sequence (Trellis)

(a,b) = | (a,b) =
(0.7,0.3)  (0.6,0.4)

x0.7
d 0.7 | o, L0O.O
x0.6¢ ¢ X0.2
b x0.3 x0.4
0.126 04 0.112
x0.6¢ ' ¢ X0.2
b x0.3 x0.4
 / 0.023 0.029] .4

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Output probabillity of observation sequence (Viterbi)

x0.7

a 0.7 x0.4 0.0

x0.6 ¢ x0.2
b x0.3 x0.4

0.126 0.112

x0.6 x0.2

b x0.3 x0.4
 / 0.023 0.020] .

The maximum likelihood path is only adopted.

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Parameters of HMM

transition
'O—0O

State

e Transition prob. : P(si,1|s; = i) = {a1;, agi, ..., aji, ..., asi}

e Output prob. : P(o|s; = i) = b;(0) = N(0; i, %)
Forward prob.
a;(t) = Ploy, -+ ops(t) =4IM) = Sa;(t—1)az;bi(of)

1
Backward prob.

Bj(t) = Plogy1,- - orls(t) = 5. M) = Sajbi(op1)0(t + 1)

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Estimation of HMM parameters

Estimation is done iteratively by updating old parameters.
e Forward prob.

a/j(-t) — P(ol,---,O't,S('t) :j|M) — Zz: (t_ 1)0’2]63( )

e Backward prob.
Bj(t) = Plogyy, - orls(t) =4, M) = Xajbi(op1)0;(t +1)

= a;()B;(t) = P(O,s(t) = j|M)

a;(t)s;(t) _ a;(t)8;(t) = L.(1)
P(O|M) an(T) /

— Represents how strongly ot Is associated with state |.

%LJ() 0t %aj('t)ﬁj(t).ot A
- ,ZL () — > aj(t)s;(t) P(O|M) > P(O|M)

= P(s(t) = jlO, M) =

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Estimation of HMM parameters
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Estimation of HMM parameters

Estimation is done iteratively by updating old parameters.
e Forward prob.

a/j(-t) — P(ol,---,O't,S('t) :j|M) — Zz: (t_ 1)0’2]63( )

e Backward prob.
Bj(t) = Plogyy, - orls(t) =4, M) = Xajbi(op1)0;(t +1)

= a;()B;(t) = P(O,s(t) = j|M)

a;(t)s;(t) _ a;(t)8;(t) = L.(1)
P(O|M) an(T) /

— Represents how strongly ot Is associated with state |.

%LJ() 0t %aj('t)ﬁj(t).ot A
- ,ZL () — > aj(t)s;(t) P(O|M) > P(O|M)

= P(s(t) = jlO, M) =

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Estimation of HMM parameters

B Z &, (t)Bj (D)o
- 2Zoymb ()
(1) s _ 2 % (H)B; (1 (0,— W) (0,— U )! Bi(1)

Forward prob. J 2 a; (DB (t) Backward prob.

O 00000 ’O*O*O*O*Q*Q
C} >O >O >O O /O{O'—O;Q;Q;Q?O
G >O >C} O /O;MQ;C;O* OO
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O /:Q;:Q;:Q;:O;:O;:O* O* O* O* O* O
@+ O+ O-C-C+-T+0

time

state

>

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Estimation of HMM parameters

o When the number of training data is 1, |
PLit)or o R L) (or—ug)lor - i)t

)&. — . , : |
J %Lj(t) J %Lj(t)

e When the number of training data is R (>1),

- ZLT() _%;frt o ()85 (t) - of
& ;[%Lj(t)] i zplr > a(1)55 (1)
g, _ FlFHO- 6 )i - )|

> L)

#speakers = several thousands

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Recognition of isolated words

arg max P(W|0O) = arg max P(OW)P(W) = arg max P(O\W)

If observation probability of W is evenly distributed.

arg max P(O|M) = arg max {)Z( P(0, X|M)}

| (X=path)
arg max P(O|M) = arg mﬁx{m)?XP(O,X\M)}

aj('t) = %ai(t — 1)aijbj(0't)v (an(T)=P(O|M))
\
6;(t) = max o;(t — Dagzb;(op),  (o(T) = P(OIM))

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Recognition of isolated words

)
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l
|
C LD prtmib g
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iInput frame

Search for the maximum likelihood path

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Today’s menu

e Fundamentals of statistical speech recognition
e Acoustic models for speech recognition

® From word models to subword models

® Speech recognition using grammars

¢ A small demo of automatic broadcast captioning

e Recommended books
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Phonemes
e

The minimum units of spoken language

short .
Vowels vowels a, 1, u, e, 0

lon e T
vowsls @ 1i, W, €, 0
Consonants plosives b, d, g, p, t, k

fricatives s, sh, z, j, f, h

affricates ch, ts

s w 28
#;E: ky, py, -
semi-vowels r, w, y
.nasals m, n, N

©1998, K.Takeda, N.Minematsu and T.Shimizu
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Word lexicon (word dictionary)

Examples required for automated call centers

PN suzuki
ek sato:

& yoshida
SA saN
WA Sso:mu
=4 e: gy o:
B3 k a ch o:
D no

BBEWLEY onegaishimasu

©1998, K.Takeda, N.Minematsu and T.Shimizu
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Tree lexicon (compact representation of the words)

®
k@)i@
k i

® @
d a

® @

The following words  gaito: (B k), sasaki (£ 4 K), sato: (1£HE)

are stored as a tree. suzuki (%I_/}?k) ’ YOShida (:g )

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Tree-based lexicon using phoneme HMMSs

i/ /t/ fo:/
b Wbl Gl
0,0, 01 a0..0:.0:.0..0:.0,.0,.0,.0,,0,.0,.0
‘f' /a/ /s/ /a/ /k/ i/
5rCnC Yy
& $2..0:.0..0;.0; .0
/t/ lo:/
NS SN EX NI XA .
/v/ /z/ fu/ /k/ i/ ;
05,0 .0: .0, 0.0
/y/ /o/ /sh li/ /d/ /a/

Generation of state-based network containing
all the candidate words

©1998, K.Takeda, N.Minematsu and T.Shimizu



Cognitive Media Processing @ 2015

Coarticulation and context-dependent phone models

Acoustic features of a specific kind of phone
depends on its phonemic context.

a-k+1 a-k+e

model of /k/ = *k+* = a-k+a a-k+u a-k+o -
monophone o-k+0 i-k+0
model of /k/
preceded by /a/and = a-k+i
succeeded by /i/ trihphone

A phoneme is defined by referring to the left
and the right context (phoneme)

©1998, K.Takeda, N.Minematsu and T.Shimizu
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Clustering of phonemic contexts

Number of logically defined trinphones = N X N x N (N = 40)
Clustering of the contexts to reduce #triphones.

irdags L

[ EE R AR EE SR YRS vooaE

ip-a+N, k-a+N...
: 4 EM.a+ N

nnnnnnnnnnnnnn

S IRT

Ly

VT S

---------------

1b-a+s, d-a+i...

Context clustering is done based on phonetic
attributes of the left and the right phonemes.

©1998, K.Takeda, N.Minematsu and T.Shimizu
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Unit of acoustic modeling

merit:  Within-word coarticulation is easy to be modeled.

word demerit: For new words, actual utterances are needed.
model " #models will be easily increased.

use:. Small vocabulary speech recognition systems

merit: Easy to add new words to the system.

phoneme demerit: -°N9 coarticulation effect is ignored.
model " Every word has to be represented as phonemic string.

use: Large vocabulary speech recognition systems

©1998, K.Takeda, N.Minematsu and T.Shimizu
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Estimation of HMM parameters

o When the number of training data is 1, |
PLit)or o R L) (or—ug)lor - i)t

)&. — . , : |
J %Lj(t) J %Lj(t)

e When the number of training data is R (>1),

- ZLT() _%;frt o ()85 (t) - of
& ;[%Lj(t)] i zplr > a(1)55 (1)
g, _ FlFHO- 6 )i - )|

> L)

#speakers = several thousands

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Estimation of HMM parameters (sharing)

e The same value can be shared among different states.

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Estimation of HMM parameters (embedded training)

e Training strategy where phoneme labels are not available.
A sentence HMM is built by 888888888
concatenating word HMMs. ~ ~!

In sentence HMMs, the states Kz@g@g@
corresponding to the same

> ¥ {ZL}TT(t).o"g

/&S _rareS It
- (O1=s
MDY {ZL;TT(t) ©
7“]7’68 1
t

. Fis =L (6) - (of —11jr) (oF — )

> ¥ |=Li(t)

7"37“65’ f

(©1998, K.Takeda, N.Minematsu and T.Shimizu
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Today’s menu

e Fundamentals of statistical speech recognition
e Acoustic models for speech recognition

® From word models to subword models

® Speech recognition using grammars

¢ A small demo of automatic broadcast captioning

e Recommended books
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A well-known strategy for diversity

e Statistical framework of ASR
e Solution of argmax_{w} P(w|o)
e P(w): prior knowledge of what kind of words or phonemes are likely to be observed.

e P(w|o): conditional probability of word observation, given acoustic observation of o.
e (specific) o -->wl, w2, w3, ...? o0-->pl, p2, p3,...?
e Data collection is very difficult to estimate P(w|o) directly.

e Use of the Bayesian rule

" plwjo) = P09 _ Pllw)Pw) __ Plojw)P(w)
P) ¥, Pl,w) %, Polw)Pw)

e The denominator is independent of w.

e Maximization of P(w|o) in terms of w is equal to that of P(o|w)P(w) ( =P(o,w) )
e Solution of argmax_{w} P(o|w) P(w)

e P(w): can be estimated from a large text corpus.

e P(o|w): conditional probability of acoustic observation, given intended content of w.
e (specific) w --> 01, 02, 03, ...? p-->01, 02,03, ...?
e This data collection is possible by asking many speakers to say w or p !!
e P(o|w): acoustic model, P(w): linguistic model
e Separate two models and a program that can search for the word sequence that maximizes P(o,w)
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Continuous speech (connect_ed Word) _reCognition

Repetitive matching between an input utterance and word
sequences that are allowed in a specific language

e Constraints on words and their sequences (ordering)

+ Vocabulary: a set of candidate words |
x+ Syntax: how words are arranged linearly.
+ Semantics: can be represented by word order??

C Examples of unaccepted sentences
« B/~ o Fx Ry = /% /E S, (lexical error)
«Fh/=oF L by va/id/HES /%, (syntax error)
« L /woXbyia/E /D, (semantic error)

©1998,1999 K.Takeda, N.Minematsu, T.Shimizu, K.ltou
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Representation of syntax (grammar)

e BEXDEBEIABREAWL 7,
° %%@(Eﬁ% = A BRAVL jf_d-o
e BEEDHBARIABENL F7,
| gy
HE0 | SABENLET
o ik N O
specific specific'
expression o, expression
variable
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Network grammar with a finite set of states

T ]
BE
- sal BENLET
B L H
® ‘ =|
START START | END END

A sentence Is accepted If it starts at one of the initial
states and ends at one of the final states.
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Speech recognition using a network grammar |

grammatical WOI’leI\/IM ‘grammatical Word HMM .

state State
) O 00 ( O
OO OrO0 )
’ N
: ) U4 U U ) U U0 (
OO OrOrOr O] O OrOrOC)
IRIBIRIR ) 00 (
OO OO . OO OO0

When a grammatical state has more than one preceding words,
the word of the maximum probability (or words with higher
probabillities) is adopted and it will be connected to the following
candidate words.
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Viterbi search algorithm
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A well-known strategy for diversity

e Statistical framework of ASR
e Solution of argmax_{w} P(w|o)
e P(w): prior knowledge of what kind of words or phonemes are likely to be observed.

e P(w|o): conditional probability of word observation, given acoustic observation of o.
e (specific) o -->wl, w2, w3, ...? o0-->pl, p2, p3,...?
e Data collection is very difficult to estimate P(w|o) directly.

e Use of the Bayesian rule

" plwjo) = P09 _ Pllw)Pw) __ Plojw)P(w)
P) ¥, Pl,w) %, Polw)Pw)

e The denominator is independent of w.

e Maximization of P(w|o) in terms of w is equal to that of P(o|w)P(w) ( =P(o,w) )
e Solution of argmax_{w} P(o|w) P(w)

e P(w): can be estimated from a large text corpus.

e P(o|w): conditional probability of acoustic observation, given intended content of w.
e (specific) w --> 01, 02, 03, ...? p-->01, 02,03, ...?
e This data collection is possible by asking many speakers to say w or p !!
e P(o|w): acoustic model, P(w): linguistic model
e Separate two models and a program that can search for the word sequence that maximizes P(o,w)
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Probabilistic decision

, .
e
o

. - Observation: You pick a ball three times. The colors are@ O @.
Probabilities of P@O® | A) and P(@ 0@ | B)
§A13x7><3 =0.063 B 37><3><7=0147
1010 10 T 10 10 10 '
Decision: The bag used is supposed to be B.
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Statistical framework of speech recognition

P(A,W) _ P(AW)P(W) _ P(AW)P(W)
P(A) P(A) > w P(A[W)P(W)
A = Acoustic, W = Word

P(W|A) =

» P(bag|@ 0 @) --> P(bag=A|@ O ®) or P(bag=B|@ O @)
« P(@O®@|bag=A) : prob. of bag A's generating @0 @.
e P(bag) > P(bag:A)-or P(bag=B) Which bag is easier to be selected?

 If we have three bags of type-A and one bag of type-B, then

P(RA| @O0® ) =0.063 x 0.75 = 0.04725
P(RB | @O0® ) = 0.147 x 0.25 = 0.03675 o

The bag used is supposed to be A.

©1998,1999 K.Takeda, N.Minematsu, T.Shimizu, K.ltou
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N-gram language model

The most widely-used implementation of P(w)

Only the previous N-1 words are used to predict the following word.
(N-1)-order Markov process

P($1,"‘,$n) = P($n|$1;"'a$n—11 P(wl"":mn—l)
~P(Zn|Tn_Ny1ysTn—1) | |
~ P(‘Bnlwn—N+1’ "ty wn—l)P(xl’ e ’mn—l)
n : .
~ I Plejlen_Ny1e2i-1)
N-1=1 --> bi-gram |
N-1 =2 --> tri-gram
I’m giving a lecture on speech recognition technology to university students.

P(a | I'm, giving), P(lecture | giving, a), P(on | a, lecture),
P(speech | lecture, on), P(recognition | on, speech), ...
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2-gram as network grammar

e 2-gram as network grammar and as tree-based network grammar
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Development of a speech recognition system |

INput speech ==

results of
recognition

—

word matching

hypothesis
generation

e nn—

probability

calculation
efficient —
pruning
decoder

acoustic

g gg model

phoneme HMM

S =<A%> <BHF>
S = <A%>

grammar

AiEnaito
HEMBtakeda

lexicon

language
model
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Today’s menu

e Fundamentals of statistical speech recognition
e Acoustic models for speech recognition

® From word models to subword models

® Speech recognition using grammars

¢ A small demo of automatic broadcast captioning

e Recommended books
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ASR under various conditions

B2 DFGFTICH T 5 ERHEIERH

O 1B B B R iAa R (tiphone DEEELS)
SILQbe: kokudeoNobetonamukita:Nhe:einokokumiNnomewachimetakuSILSILQayag
adooojoowatsunerumadeiniwaSILSILtsukanarinosaigetsohichiootoshita

O B & A SRt ha 3o (E 50 + S A g E DHFHEN)
SILIFWZ K TEABREBECELANNVNDCILKAADHDLEDHLKSILSILoHBPrHELLL B
PbOoRhRhBFTWICDSILSILDDTEDbDETWITFO2OE8OEEE EL SIL

O Ef B Ara R (L + EZDHHENA, FREH=20K)
Istpass KR KAV NN FLEE FZ-> EREEB A Bi> A, ? AV EE EX AMZHS XT
BD BTV o HEBREEL it
2ndpass KR XAV NN FLIRE F > EREB R B> <. . AV ELXKNZDHS ETE
DBSWhEBBRELL
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ASR under various conditions

B2 DFGFTICH T 5 FRHEERE

O i & ERsR A= 2 (triphone DIEEEH)
SILQbe:kokudeoNobetonamukita:Nhe:einokokumiNnomewachimetakuSILSILQayag
adooojoowatsunerumadeiniwaSILSILtsukanarinosaigetsohichiootoshita

O & & Hlssaing & (L5C + EEEE DH#EA)
SILFWZ K THRABREBBELANVND I HADHDOEDLSILSIL>BPHELELL S
POoRZ3FTVLIEDLSLSLODBDLDETVWIFOEVBEEH & LESL

O Ef A mirare (LD + EFZ DB, FEH=20K)
Istpass K KAV NN FLHEE FZ-> EREEB A B> A, ? AV EE EX KM EHS XT
BD BREWZ o HE REEEL it
2ndpass KR XAV NN FLREF Z> EREB AR B> <. . AV EXXKNHFHS ETE
DBEVWNEBBEREEL I

O A= E S = soamtina e (L 50 + EEE R DB A EN)
Istpass KEIDARMFLREEDERDBN S, S RBRABZEHZIETICIF. DED DEA%Z
LZ\E ?gc‘:. L7,
2ndpass KEIODRMFLIREEDERDB RS, BHSHWRABZEHZETICIF. DED DEA%Z
LZ\E E ULk,

A IEBEX
KETERNFLBEEANDEEDHR SL ., BSHAEABZEDHDIETICE PEOOFRAZREE
L%,
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Automatic broadcast captioning
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Recommended books

HEIAD'WUEN HDN

SP@K €N

LANGUAGE PROCESSING
4 Guide 1o Theory, Algorithm, and System Development

Fosewond by Dt Ry Reddy
e Yokt Deserity




