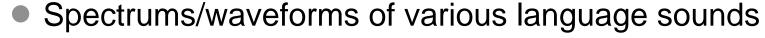
Nobuaki Minematsu

Menu of the last lecture

- More on details of acoustic phonetics (continued)
 - Characteristics of human hearing
 - Fundamental frequency and pitch again
 - Fourier analysis of speech signals
 - Simple hearing tests

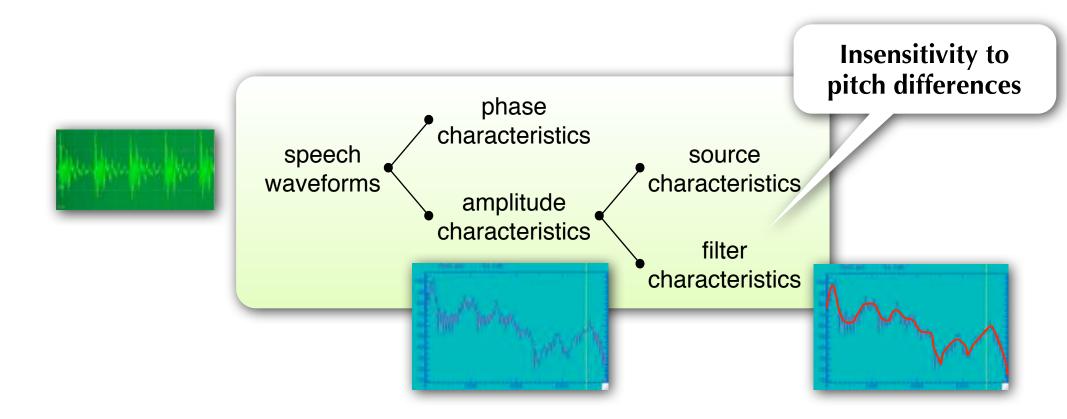
- Source-filter model of speech production $S(\omega) = G(\omega)H(\omega)R(\omega)$
- Cepstrum method to separate source and filter
- Advanced analysis tool of STRAIGHT
- Some morphing examples
- LPC, PARCOR, and the shape of a vocal tube



- Vowels, semivowels, liquids, nasals, voiced fricatives, unvoiced fricatives, glottals,
- voiced plosives, unvoiced plosives, voiced affricatives, and unvoiced affricatives
- Speech recognition as spectrum reading
- Summary

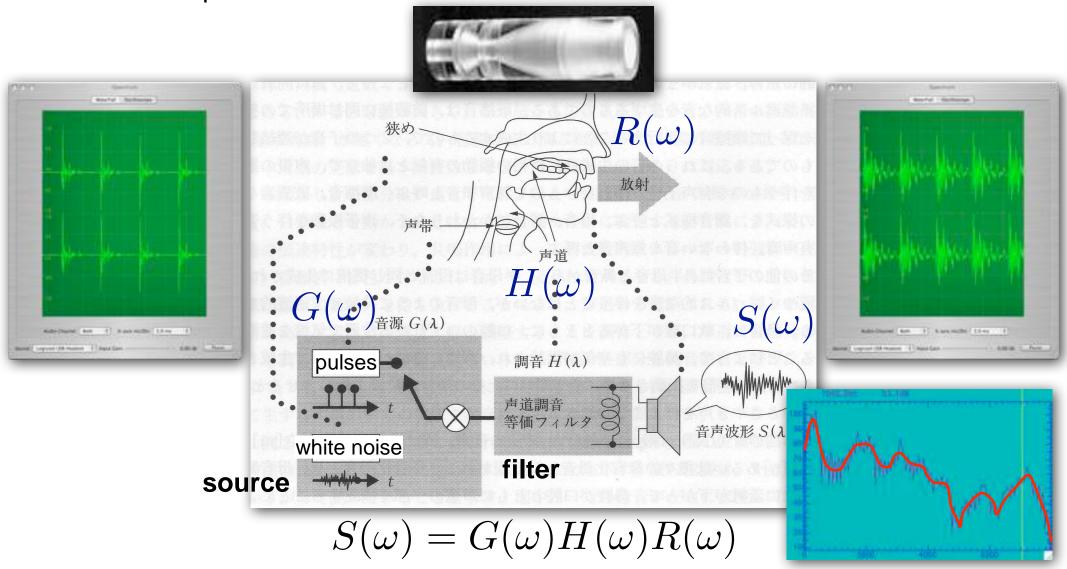
Spectrum to spectrum envelope

- From spectrums to spectrum envelopes
 - log-amplitude spectrum -> smoothing -> spectrum envelope
- Humans' insensitivity to pitch differences when perceiving phonemes.
 - /a/ with high tone and /a/ with low tone are perceived to be of the same class.
 - Separation of pitch (fundamental frequency) can be done by spectrum smoothing.



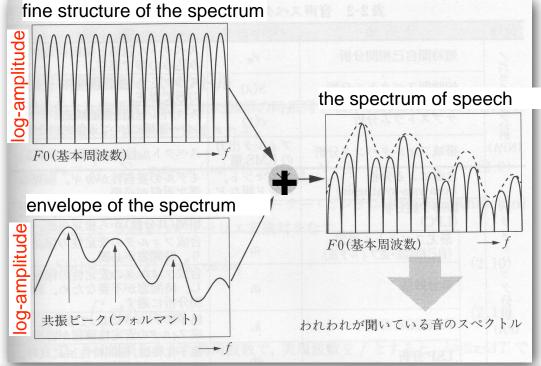
Modeling of speech production

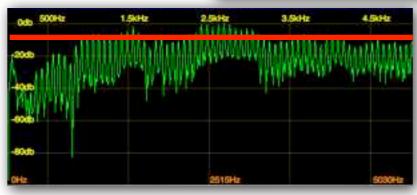
- Mathematical modeling of speech production -- source & filter model --
 - Linear independence between source and filter

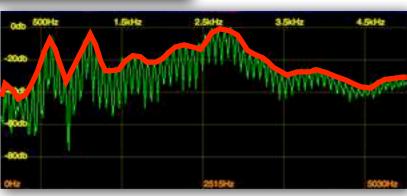


Modeling of vowel production

- Mathematical modeling of speech production -- source & filter model --
 - Separation between the spectrums of source and filter

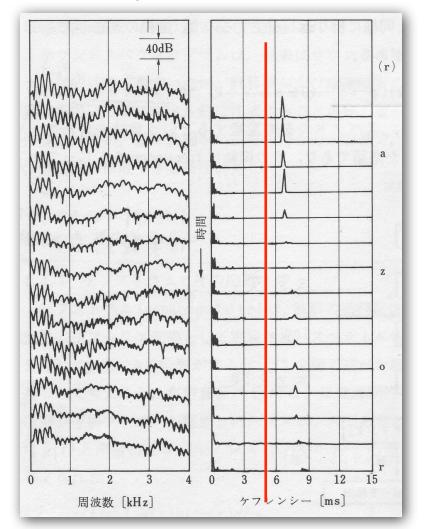


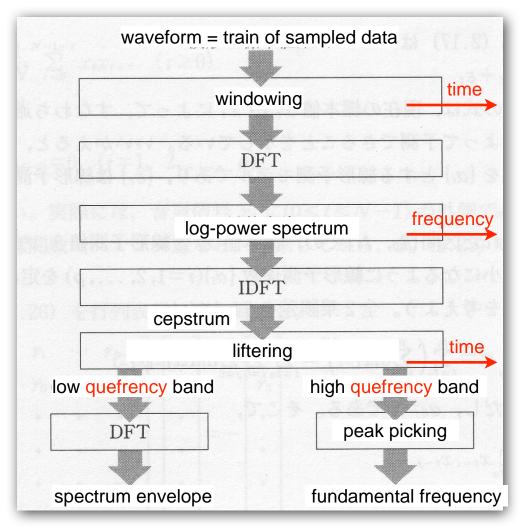




Extraction of spectrum env

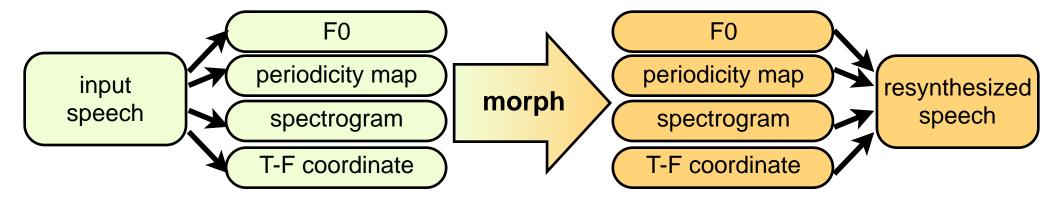
- Cepstrum method
 - Windowing + FFT + log-amplitude --> a spectrum with pitch harmonics
 - Smoothing (LPF) of the fine spectrum into its smoothed version





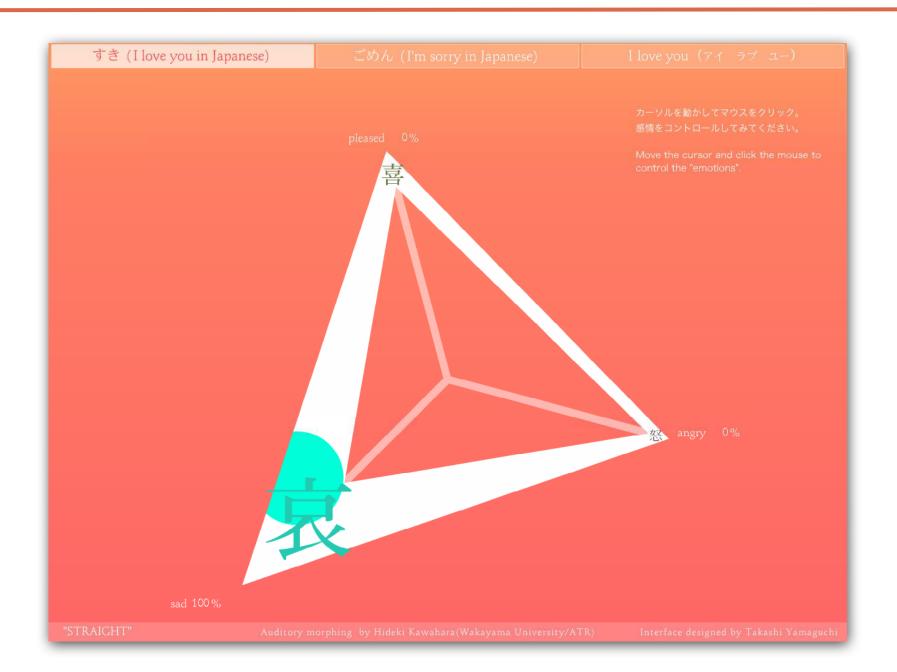
Advanced technology for analysis

- STRAIGHT [Kawahara'06]
 - High-quality analysis-resynthesis tool
 - Decomposition of speech into
 - Fundamental frequency, spectrographic representations of power, and that of periodicity
 - High-quality speech morphing tool



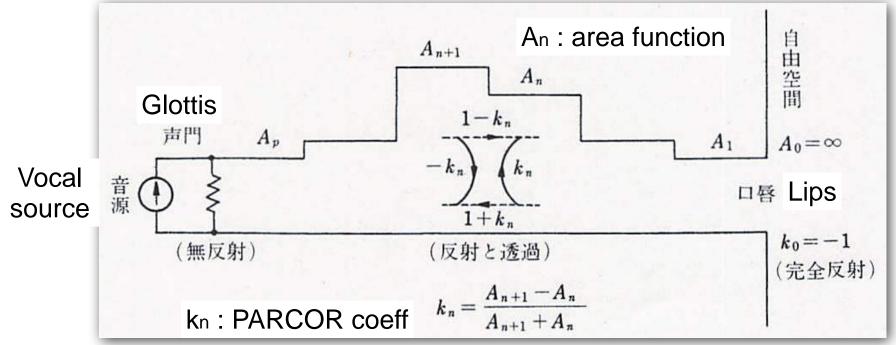
- Spectrographic representation of power
 - F0 adaptive complementary set of windows and spline based optimal smoothing
- Instantaneous frequency based F0 extraction
 - With correlation-based F0 extraction integrated
- Spectrographic representation of periodicity
 - Harmonic analysis based method

Examples of speech morphing



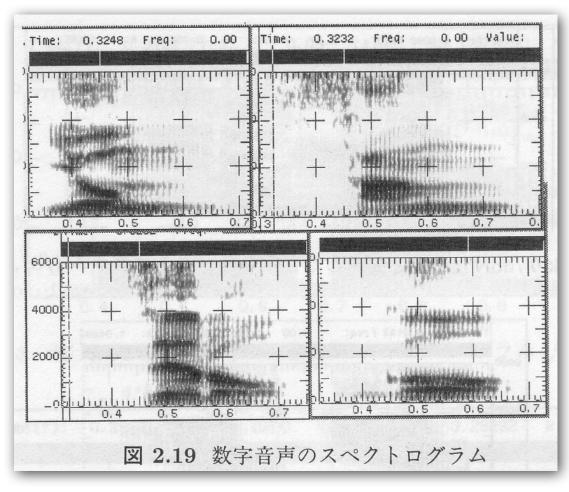
LPC to vocal tract area function

- $\{\alpha_k\}$ to the area function of the vocal tube.
 - LPC coefficients are transformed into PARCOR (PARtial auto-CORrelation) coefficients.
 - PARCOR coeff. are transformed to reflection coefficients between two consecutive short tubes.
 - Finally PARCOR coefficients are related to the cross-sectional area of each short tube.



Spectrum reading

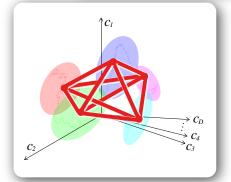
- What are these?
 - Hint: they are numbers.



This is the task that is done by a speech recognizer.

Title of each lecture

- Theme-1
 - Multimedia information and humans
 - Multimedia information and interaction between humans and machines
 - Multimedia information used in expressive and emotional processing
 - A wonder of sensation synesthesia -
- Theme-2
 - Speech communication technology articulatory & acoustic phonetics -
 - Speech communication technology speech analysis -
 - Speech communication technology speech recognition -
 - Speech communication technology speech synthesis -
- Theme-3
 - A new framework for "human-like" speech machines #1
 - A new framework for "human-like" speech machines #2
 - A new framework for "human-like" speech machines #3
 - A new framework for "human-like" speech machines #4



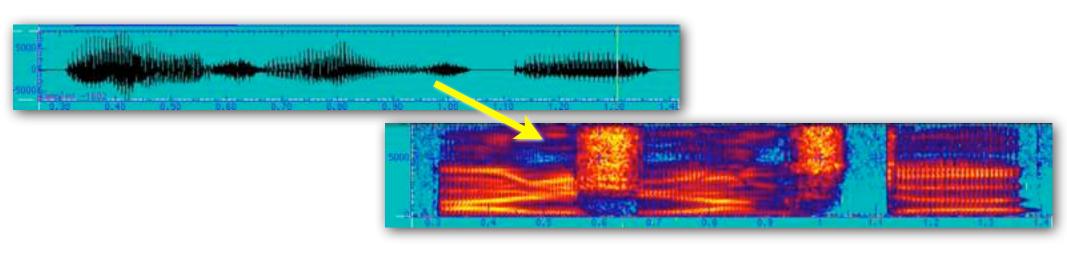
Speech Communication Tech. - Speech recognition -

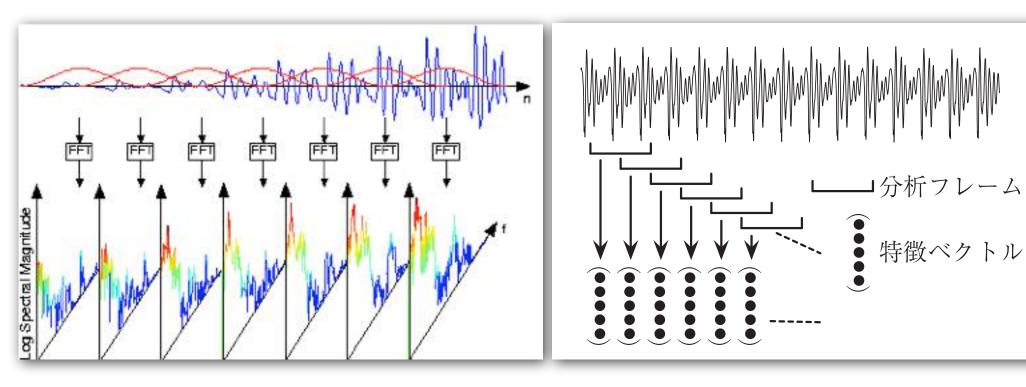
Nobuaki Minematsu

Today's menu

- Fundamentals of statistical speech recognition
- Acoustic models for speech recognition
- From word models to subword models
- Speech recognition using grammars
- A small demo of automatic broadcast captioning
- Recommended books

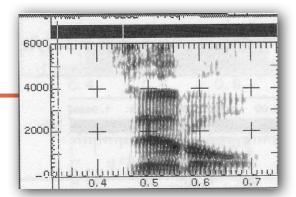
Waveforms --> spectrums --> sequence of feature vectors





Difficulty of ASR

- Task of Automatic Speech Recognition (ASR)
 - Automatic estimation of what is said by any speaker
 - Determination of the word sequence of an utterance of any speaker
 - Input: spectrum sequence
 - Output: word sequence
- Acoustic difficulty of ASR
 - A large acoustic diversity of one and the same linguistic content, e.g. word
 - Factors of the diversity: speaker identity, age, gender, speaking style, channel, line, etc.
 - Not explicitly represented in the written form of language.
- Linguistic difficulty of ASR
 - We're not speaking like the written form of language.
 - How to characterize word sequences in naturally and spontaneously generated speech?
 - How to treat ungrammatical utterances, word fragments, filled pauses, etc?



A well-known strategy for diversity

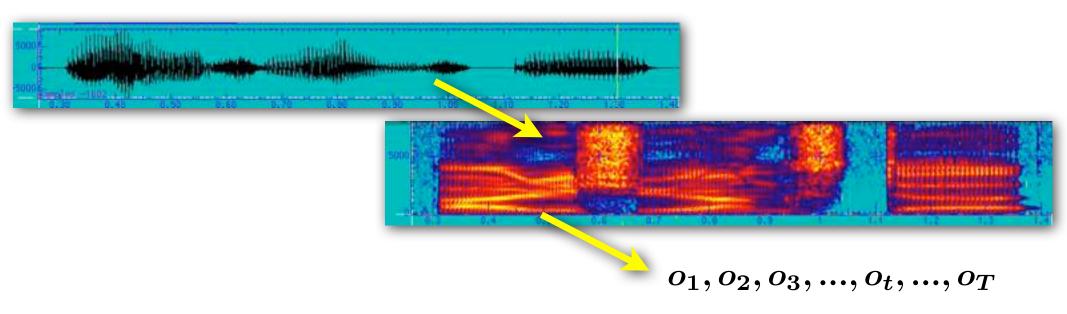
Statistical framework of ASR

- Solution of argmax_{w} P(w|o)
 - P(w): prior knowledge of what kind of words or phonemes are likely to be observed.
 - P(w|o): conditional probability of word observation, given acoustic observation of o.
 - (specific) o --> w1, w2, w3, ...? o --> p1, p2, p3, ...?
 - Data collection is very difficult to estimate P(w|o) directly.
- Use of the Bayesian rule

$$P(w|o) = \frac{P(w,o)}{P(o)} = \frac{P(o|w)P(w)}{\sum_w P(o,w)} = \frac{P(o|w)P(w)}{\sum_w P(o|w)P(w)}$$

- The denominator is independent of w.
- Maximization of P(w|o) in terms of w is equal to that of P(o|w)P(w) (=P(o,w))
- Solution of argmax_{w} P(o|w) P(w)
 - P(w): can be estimated from a large text corpus.
 - P(o|w): conditional probability of acoustic observation, given intended content of w.
 - (specific) w --> o1, o2, o3, ...? p --> o1, o2, o3, ...?
 - This data collection is possible by asking many speakers to say w or p!!
 - P(o|w): acoustic model, P(w): linguistic model
 - Separate two models and a program that can search for the word sequence that maximizes P(o,w)

Waveforms --> spectrums --> sequence of feature vectors



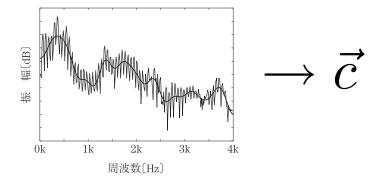
$$\arg \max_{w} P(w_1, w_2, ..., w_N | o_1, ..., o_t, ..., o_T) =$$

$$\arg \max_{w} P(o_1, ..., o_t, ..., o_T | w_1, w_2, ..., w_N) P(w_1, w_2, ..., w_N)$$

o: cepstrum vector

Cep. distortion and DTW

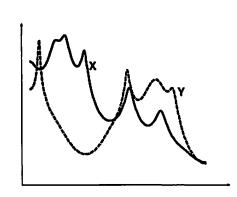
Cepstrum vector = spectrum envelope



- 2 cepstrum vectors always satisfy the following equation.
 - log|Sn|, log|Tn|: 2 spectrums
 - log|S'n|, log|T'n|: 2 spectrum envelopes that are characterized by M cepstrums.
 - Euclid distance of cepstrums has a clear physical meaning.

$$D_n = \left(\log|S'_n| - \overline{\log|S_n|}\right) - \left(\log|T'_n| - \overline{\log|T_n|}\right)$$

$$2\sum_{k=1}^{M} (c_k^S - c_k^T)^2 = \frac{1}{N} \sum_{i=0}^{N-1} D_n^2$$

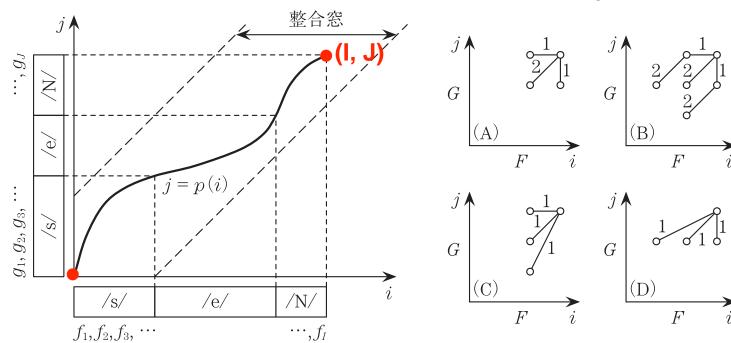


Cep. distortion and DTW

- Dynamic Time Warping
 - Temporal alignment between two utterances of the same content
 - Temporal alignment between two utterances of different contents
 - Finding the best path that minimizes the accumulated distortion along that path.

$$\min_{p} \left[\frac{1}{Z} \sum_{i=1}^{I} d(f_i, g_{p(i)}) \right]$$

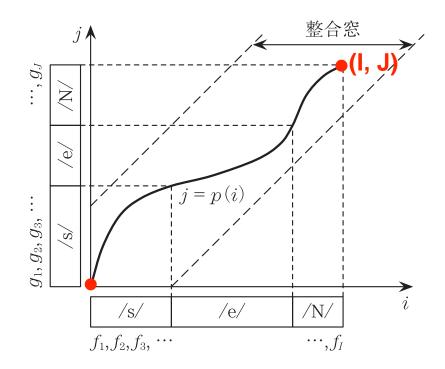
• Local distortion: $d(f_i, g_j)$ = euclid distance of the corresponding two cepstrum vectors.

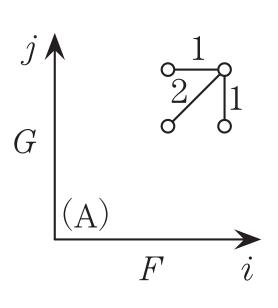


Cep. distortion and DTW

- Total distortion accumulated up to point (i,j) = D(i,j)
 - d(i,j) = local distortion (distance) between fi and gj.

$$D(i,j) = \min \begin{bmatrix} D(i,j-1) + d(i,j) \\ D(i-1,j-1) + 2d(i,j) \\ D(i-1,j) + d(i,j) \end{bmatrix} \longrightarrow \min_{p} \left[\frac{1}{Z} \sum_{j} d(i,p(i)) \right] = \frac{1}{I+J-1} D(I,J)$$





Today's menu

- Fundamentals of statistical speech recognition
- Acoustic models for speech recognition
- From word models to subword models
- Speech recognition using grammars
- A small demo of automatic broadcast captioning
- Recommended books

A well-known strategy for diversity

Statistical framework of ASR

- Solution of argmax_{w} P(w|o)
 - P(w): prior knowledge of what kind of words or phonemes are likely to be observed.
 - P(w|o): conditional probability of word observation, given acoustic observation of o.
 - (specific) o --> w1, w2, w3, ...? o --> p1, p2, p3, ...?
 - Data collection is very difficult to estimate P(w|o) directly.
- Use of the Bayesian rule

$$P(w|o) = \frac{P(w,o)}{P(o)} = \frac{P(o|w)P(w)}{\sum_w P(o,w)} = \frac{P(o|w)P(w)}{\sum_w P(o|w)P(w)}$$

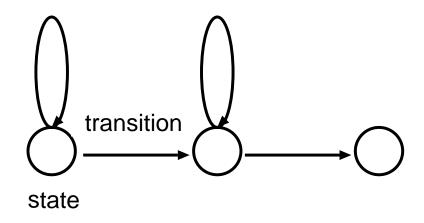
- The denominator is independent of w.
- Maximization of P(w|o) in terms of w is equal to that of P(o|w)P(w) (=P(o,w))
- Solution of argmax_{w} P(o|w) P(w)
 - P(w): can be estimated from a large text corpus.
 - P(o|w): conditional probability of acoustic observation, given intended content of w.
 - (specific) w --> o1, o2, o3, ...? p --> o1, o2, o3, ...?
 - This data collection is possible by asking many speakers to say w or p!!
 - P(o|w): acoustic model, P(w): linguistic model
 - Separate two models and a program that can search for the word sequence that maximizes P(o,w)

Markov Process

$$P(x_n|x_{n-1},\dots,x_1) = P(x_n|x_{n-1})$$

- Signal at t = n depends only on the previous signal (t=n-1).
- If signal at t = n-1 is known, signals at t < n-1 have no effect on the next signal at t = n.

Hidden Markov Process

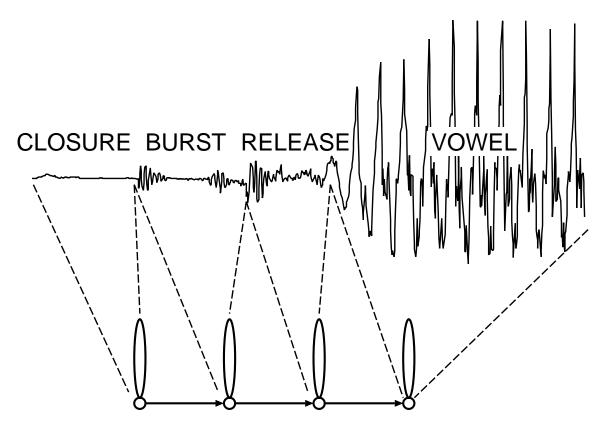


$$P(x_n|\underbrace{x_{n-1},\cdots,x_1}) = P(x_n|\underbrace{S_n})$$
 previous observations current state_

Observation sequence : $x_1, x_2, \dots, x_n, \dots$ (Hidden) state sequence : $S_1, S_2, \dots, S_n, \dots$

- Previous observations cannot determine the current state uniquely.
- Signals (features) are observed but states are hidden.

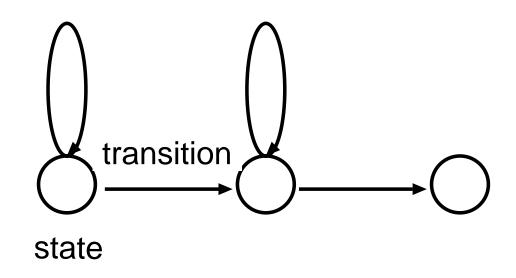
HMM as generative model



Probabilistic generative model

State transition is modeled as transition probability. Output features are modeled as output probability.

Parameters of HMM



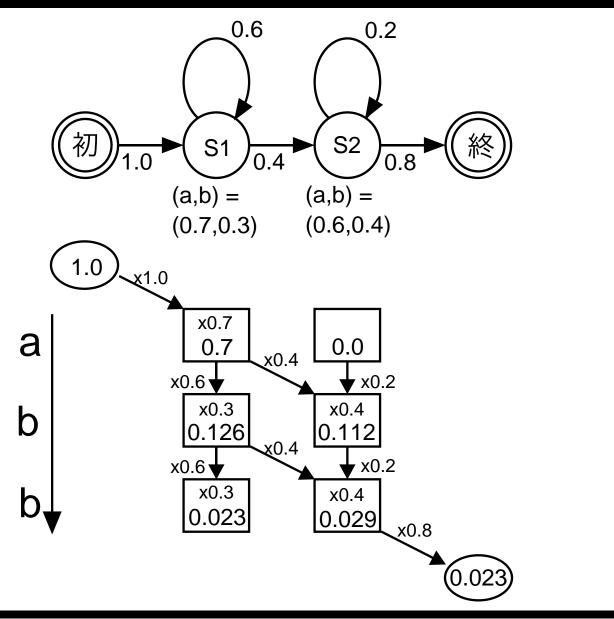
- Transition prob. : $P(s_{t+1}|s_t=i) = \{a_{1i}, a_{2i}, ..., a_{ji}, ..., a_{Si}\}$
- \bullet Output prob. : $P(o|s_t=i)=b_i(o)=\mathcal{N}(o;\mu_i,\Sigma_i)$ Forward prob.

$$\alpha_j(t) = P(o_1, \dots, o_t, s(t) = j|M) \qquad = \sum_i \alpha_i(t-1)a_{ij}b_j(o_t)$$

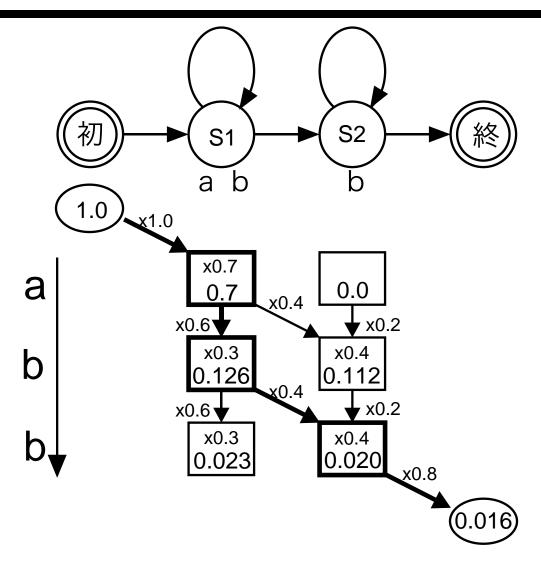
Backward prob.

$$\beta_j(t) = P(o_{t+1}, \dots, o_T | s(t) = j, M) = \sum_i a_{ji} b_i(o_{t+1}) \beta_i(t+1)$$

Output probability of observation sequence (Trellis)

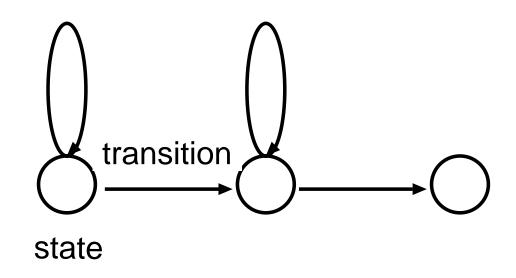


Output probability of observation sequence (Viterbi)



The maximum likelihood path is only adopted.

Parameters of HMM



- Transition prob. : $P(s_{t+1}|s_t=i) = \{a_{1i}, a_{2i}, ..., a_{ji}, ..., a_{Si}\}$
- \bullet Output prob. : $P(o|s_t=i)=b_i(o)=\mathcal{N}(o;\mu_i,\Sigma_i)$ Forward prob.

$$\alpha_j(t) = P(o_1, \dots, o_t, s(t) = j|M) \qquad = \sum_i \alpha_i(t-1)a_{ij}b_j(o_t)$$

Backward prob.

$$\beta_j(t) = P(o_{t+1}, \dots, o_T | s(t) = j, M) = \sum_i a_{ji} b_i(o_{t+1}) \beta_i(t+1)$$

Estimation of HMM parameters

Estimation is done iteratively by updating old parameters.

Forward prob.

$$\alpha_j(t) = P(o_1, \dots, o_t, s(t) = j|M)$$

$$= \sum_i \alpha_i(t-1)a_{ij}b_j(o_t)$$

Backward prob.

$$\beta_j(t) = P(o_{t+1}, \dots, o_T | s(t) = j, M) = \sum_i a_{ji} b_i(o_{t+1}) \beta_i(t+1)$$

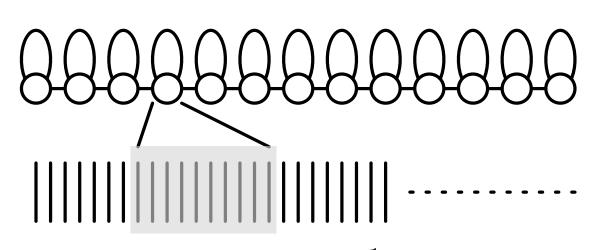
$$\rightarrow \alpha_j(t)\beta_j(t) = P(O, s(t) = j|M)$$

$$\rightarrow P(s(t) = j|O, M) = \frac{\alpha_j(t)\beta_j(t)}{P(O|M)} = \frac{\alpha_j(t)\beta_j(t)}{\alpha_N(T)} = L_j(t)$$

→ Represents how strongly ot is associated with state j.

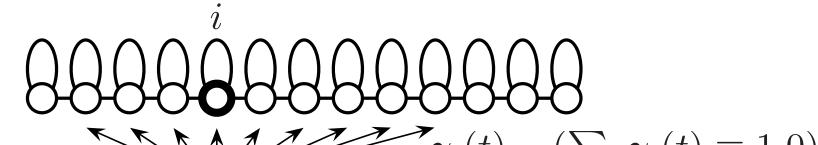
$$\rightarrow \hat{\mu}_{j} = \frac{\sum_{t}^{\Sigma} L_{j}(t) \cdot o_{t}}{\sum_{t}^{\Sigma} L_{j}(t)} = \frac{\sum_{t}^{\Sigma} \alpha_{j}(t) \beta_{j}(t) \cdot o_{t}}{\sum_{t}^{\Sigma} \alpha_{j}(t) \beta_{j}(t)} \qquad P(O|\hat{M}) \ge P(O|M)$$

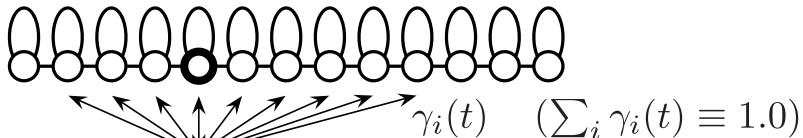
Estimation of HMM parameters



$$\mu = \frac{1}{T} \sum_{t} o_t = \frac{\sum_{t} \frac{1}{T} o_t}{\sum_{t} \frac{1}{T}}$$

$$\Sigma = \frac{1}{T} \sum_{t}^{t} (o_t - \mu)(o_t - \mu)^{\mathrm{T}}$$

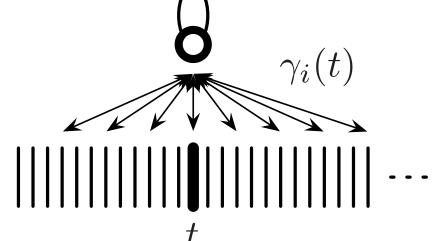




$$\hat{\mu}_i = \frac{\sum_t \gamma_i(t) o_t}{\sum_t \gamma_i(t)}$$

$$\hat{\Sigma}_i = \frac{\sum_t \gamma_i(t) (o_t - \mu) (o_t - \mu)^{\mathrm{T}}}{\sum_t \gamma_i(t)}$$

$$P(O|\hat{M}) \ge P(O|M)$$



Estimation of HMM parameters

Estimation is done iteratively by updating old parameters.

Forward prob.

$$\alpha_j(t) = P(o_1, \dots, o_t, s(t) = j|M)$$

$$= \sum_i \alpha_i(t-1)a_{ij}b_j(o_t)$$

Backward prob.

$$\beta_j(t) = P(o_{t+1}, \dots, o_T | s(t) = j, M) = \sum_i a_{ji} b_i(o_{t+1}) \beta_i(t+1)$$

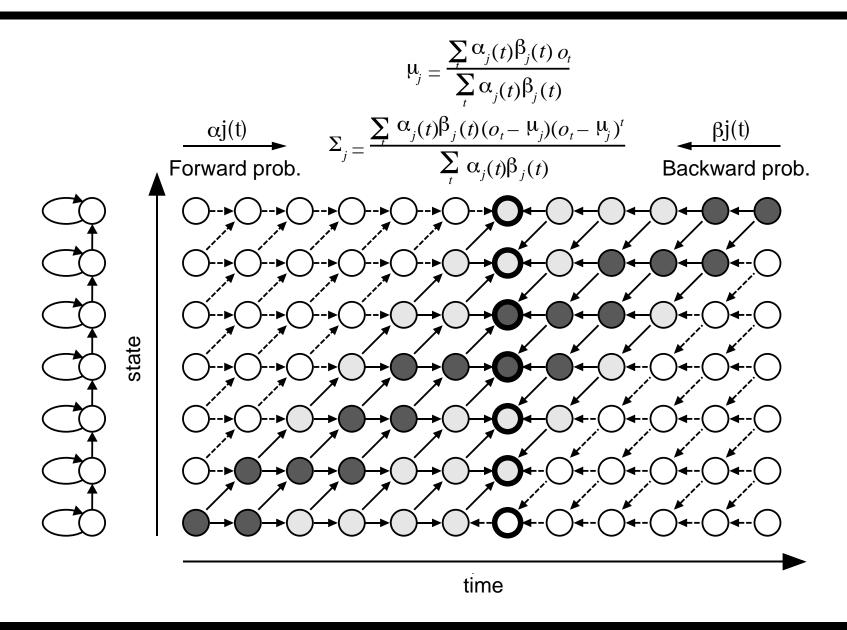
$$\rightarrow \alpha_j(t)\beta_j(t) = P(O, s(t) = j|M)$$

$$\rightarrow P(s(t) = j|O, M) = \frac{\alpha_j(t)\beta_j(t)}{P(O|M)} = \frac{\alpha_j(t)\beta_j(t)}{\alpha_N(T)} = L_j(t)$$

→ Represents how strongly ot is associated with state j.

$$\rightarrow \hat{\mu}_{j} = \frac{\sum_{t}^{\Sigma} L_{j}(t) \cdot o_{t}}{\sum_{t}^{\Sigma} L_{j}(t)} = \frac{\sum_{t}^{\Sigma} \alpha_{j}(t) \beta_{j}(t) \cdot o_{t}}{\sum_{t}^{\Sigma} \alpha_{j}(t) \beta_{j}(t)} \qquad P(O|\hat{M}) \ge P(O|M)$$

Estimation of HMM parameters



Estimation of HMM parameters

• When the number of training data is 1,

$$\hat{\mu}_j = \frac{\sum_{t=1}^{L} L_j(t) \cdot o_t}{\sum_{t=1}^{L} L_j(t)}, \quad \hat{\Sigma}_j = \frac{\sum_{t=1}^{L} L_j(t) \cdot (o_t - \mu_j)(o_t - \mu_j)^t}{\sum_{t=1}^{L} L_j(t)}$$

• When the number of training data is R (>1),

$$\hat{\mu}_{j} = \frac{\sum\limits_{r} \left[\sum\limits_{t} L_{j}^{r}(t) \cdot o_{t}^{r}\right]}{\sum\limits_{r} \left[\sum\limits_{t} L_{j}^{r}(t)\right]} = \frac{\sum\limits_{r} \frac{1}{P^{r}} \left[\sum\limits_{t} \alpha_{j}^{r}(t) \beta_{j}^{r}(t) \cdot o_{t}^{r}\right]}{\sum\limits_{r} \frac{1}{P^{r}} \left[\sum\limits_{t} \alpha_{j}^{r}(t) \beta_{j}^{r}(t)\right]}$$

$$\hat{\Sigma}_{j} = \frac{\sum_{r} \left[\sum_{t} L_{j}^{r}(t) \cdot (o_{t}^{r} - \mu_{j})(o_{t}^{r} - \mu_{j})^{t} \right]}{\sum_{r} \left[\sum_{t} L_{j}^{r}(t) \right]} = \cdots$$

#speakers = several thousands

Recognition of isolated words

$$\arg\max_{W} P(W|O) = \arg\max_{W} P(O|W)P(W) = \arg\max_{W} P(O|W)$$

if observation probability of W is evenly distributed.

$$\arg \max_{M} P(O|M) = \arg \max_{M} \left\{ \sum_{X} P(O, X|M) \right\}$$

$$\downarrow \qquad (X = \mathsf{path})$$

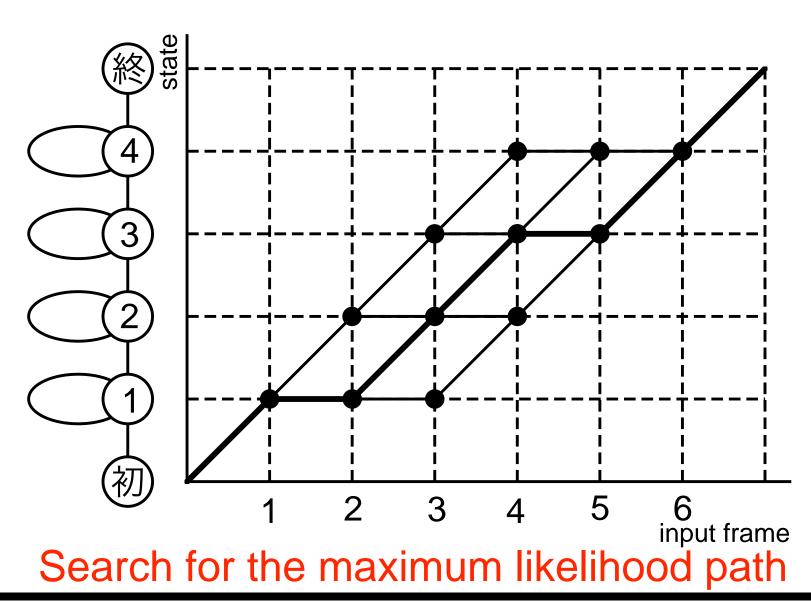
$$\arg \max_{M} \hat{P}(O|M) = \arg \max_{M} \left\{ \max_{X} P(O, X|M) \right\}$$

$$\alpha_{j}(t) = \sum_{i} \alpha_{i}(t-1)a_{ij}b_{j}(o_{t}), \quad (\alpha_{N}(T) \equiv P(O|M))$$

$$\downarrow$$

$$\phi_{j}(t) = \max_{i} \phi_{i}(t-1)a_{ij}b_{j}(o_{t}), \quad (\phi_{N}(T) \equiv \hat{P}(O|M))$$

Recognition of isolated words



Today's menu

- Fundamentals of statistical speech recognition
- Acoustic models for speech recognition
- From word models to subword models
- Speech recognition using grammars
- A small demo of automatic broadcast captioning
- Recommended books

Phonemes

The minimum units of spoken language

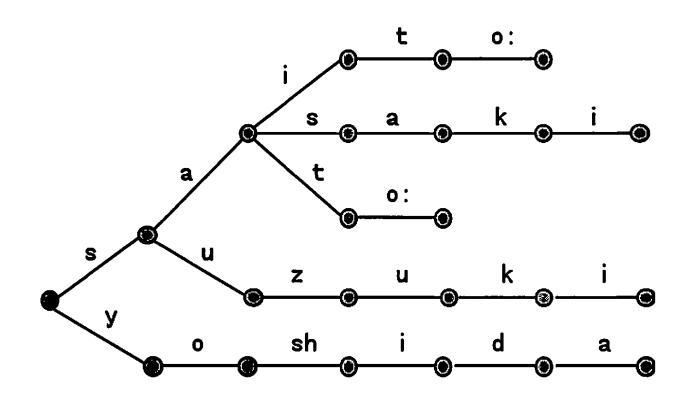
```
Vowels vowels a, i, u, e, o
long vowels a:, i:, u:, e:, o:
Consonants plosives b, d, g, p, t, k
fricatives s, sh, z, j, f, h
affricates ch, ts
执音: ky, py, ..
semi-vowels r, w, y
nasals m, n, N
```

Word lexicon (word dictionary)

Examples required for automated call centers

鈴木	suzuki
佐藤	sato:
吉田	y o sh i d a
さん	s a N
総務	s o: m u
営業	e: gy o:
課長	k a ch o:
の	n o
お願いします	onegaishimasu

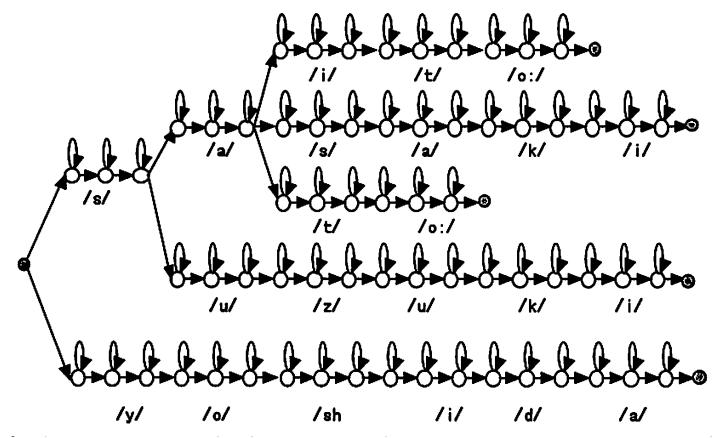
Tree lexicon (compact representation of the words)



The following words are stored as a tree.

saito: (斉藤), sasaki (佐々木), sato: (佐藤) suzuki (鈴木), yoshida (吉田)

Tree-based lexicon using phoneme HMMs



Generation of state-based network containing all the candidate words

Coarticulation and context-dependent phone models

Acoustic features of a specific kind of phone depends on its phonemic context.

model of
$$/k/$$
 = $*-k+*$ = $a-k+a$ $a-k+u$ $a-k+o$

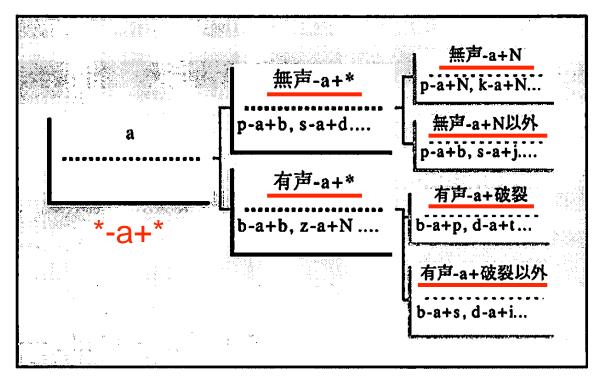
model of $/k/$

model of /k/
preceded by /a/ and = a-k+i
succeeded by /i/ trihphone

A phoneme is defined by referring to the left and the right context (phoneme)

Clustering of phonemic contexts

Number of logically defined trihphones = N x N x N (N \approx 40) Clustering of the contexts to reduce #triphones.



Context clustering is done based on phonetic attributes of the left and the right phonemes.

Unit of acoustic modeling

	merit:	Within-word coarticulation is easy to be modeled.
word model	demerit:	For new words, actual utterances are needed. #models will be easily increased.
	use:	Small vocabulary speech recognition systems
	merit:	Easy to add new words to the system.
phoneme model	demerit:	Long coarticulation effect is ignored. Every word has to be represented as phonemic string.
	use:	Large vocabulary speech recognition systems

Estimation of HMM parameters

• When the number of training data is 1,

$$\hat{\mu}_j = \frac{\sum_{t=1}^{L} L_j(t) \cdot o_t}{\sum_{t=1}^{L} L_j(t)}, \quad \hat{\Sigma}_j = \frac{\sum_{t=1}^{L} L_j(t) \cdot (o_t - \mu_j)(o_t - \mu_j)^t}{\sum_{t=1}^{L} L_j(t)}$$

• When the number of training data is R (>1),

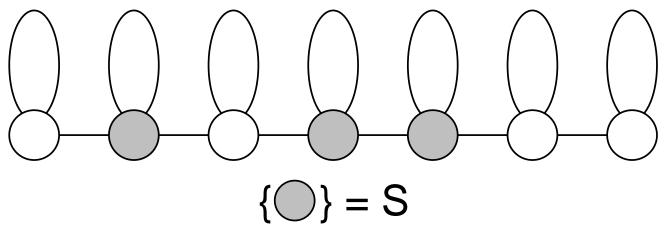
$$\hat{\mu}_{j} = \frac{\sum\limits_{r} \left[\sum\limits_{t} L_{j}^{r}(t) \cdot o_{t}^{r}\right]}{\sum\limits_{r} \left[\sum\limits_{t} L_{j}^{r}(t)\right]} = \frac{\sum\limits_{r} \frac{1}{P^{r}} \left[\sum\limits_{t} \alpha_{j}^{r}(t) \beta_{j}^{r}(t) \cdot o_{t}^{r}\right]}{\sum\limits_{r} \frac{1}{P^{r}} \left[\sum\limits_{t} \alpha_{j}^{r}(t) \beta_{j}^{r}(t)\right]}$$

$$\hat{\Sigma}_{j} = \frac{\sum_{r} \left[\sum_{t} L_{j}^{r}(t) \cdot (o_{t}^{r} - \mu_{j})(o_{t}^{r} - \mu_{j})^{t} \right]}{\sum_{r} \left[\sum_{t} L_{j}^{r}(t) \right]} = \cdots$$

#speakers = several thousands

Estimation of HMM parameters (sharing)

The same value can be shared among different states.



$$\hat{\mu}_{S} = \frac{\sum_{\substack{r \ j \in S}} \sum_{\substack{t}} \left[\sum_{t} L_{j}^{r}(t) \cdot o_{t}^{r}\right]}{\sum_{\substack{r \ j \in S}} \sum_{\substack{t}} \left[\sum_{t} L_{j}^{r}(t)\right]}$$

$$\hat{\Sigma}_{S} = \frac{\sum_{\substack{r \ j \in S}} \sum_{\substack{t \ t}} \left[\sum_{\substack{t}} L_{j}^{r}(t) \cdot (o_{t}^{r} - \mu_{j})(o_{t}^{r} - \mu_{j})^{t} \right]}{\sum_{\substack{r \ j \in S}} \sum_{\substack{t}} \left[\sum_{\substack{t}} L_{j}^{r}(t) \right]}$$

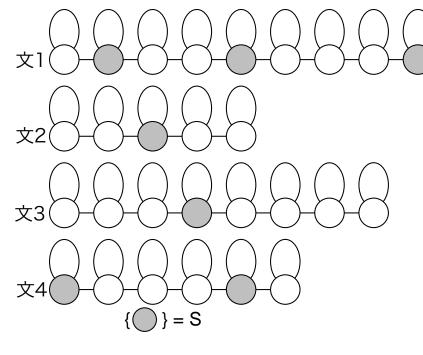
Estimation of HMM parameters (embedded training)

Training strategy where phoneme labels are not available.

A sentence HMM is built by concatenating word HMMs.

In sentence HMMs, the states corresponding to the same phoneme are shared.

$$\hat{\mu}_{S} = \frac{\sum\limits_{\substack{r \ j^r \in S}} \sum\limits_{\substack{t}} \left[\sum\limits_{t} L_{j^r}^r(t) \cdot o_t^r\right]}{\sum\limits_{\substack{r \ j^r \in S}} \sum\limits_{\substack{t}} \left[\sum\limits_{t} L_{j^r}^r(t)\right]}$$



$$\hat{\Sigma}_{S} = \frac{\sum_{\substack{r \ j^r \in S}} \left[\sum_{\substack{t}} L_{j^r}^r(t) \cdot (o_t^r - \mu_{j^r})(o_t^r - \mu_{j^r})^t \right]}{\sum_{\substack{r \ j^r \in S}} \left[\sum_{\substack{t}} L_{j^r}^r(t) \right]}$$

Today's menu

- Fundamentals of statistical speech recognition
- Acoustic models for speech recognition
- From word models to subword models
- Speech recognition using grammars
- A small demo of automatic broadcast captioning
- Recommended books

A well-known strategy for diversity

Statistical framework of ASR

- Solution of argmax_{w} P(w|o)
 - P(w): prior knowledge of what kind of words or phonemes are likely to be observed.
 - P(w|o): conditional probability of word observation, given acoustic observation of o.
 - (specific) o --> w1, w2, w3, ...? o --> p1, p2, p3, ...?
 - Data collection is very difficult to estimate P(w|o) directly.
- Use of the Bayesian rule

$$P(w|o) = \frac{P(w,o)}{P(o)} = \frac{P(o|w)P(w)}{\sum_w P(o,w)} = \frac{P(o|w)P(w)}{\sum_w P(o|w)P(w)}$$

- The denominator is independent of w.
- Maximization of P(w|o) in terms of w is equal to that of P(o|w)P(w) (=P(o,w))
- Solution of argmax_{w} P(o|w) P(w)
 - P(w): can be estimated from a large text corpus.
 - P(o|w): conditional probability of acoustic observation, given intended content of w.
 - (specific) w --> o1, o2, o3, ...? p --> o1, o2, o3, ...?
 - This data collection is possible by asking many speakers to say w or p!!
 - P(o|w): acoustic model, P(w): linguistic model
 - Separate two models and a program that can search for the word sequence that maximizes P(o,w)

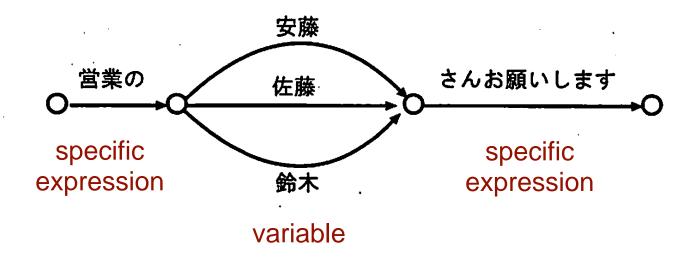
Continuous speech (connected word) recognition

Repetitive matching between an input utterance and word sequences that are allowed in a specific language

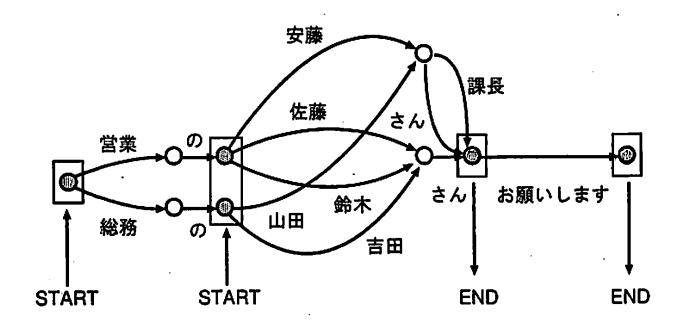
- Constraints on words and their sequences (ordering)
 - * Vocabulary: a set of candidate words
 - * Syntax: how words are arranged linearly.
 - * Semantics: can be represented by word order??
- Examples of unaccepted sentences
 - * 私/は/マッキンポッシュ/を/使う。(lexical error)
 - * 私/マッキントッシュ/は/使う/を。(syntax error)
 - * 私/は/マッキントッシュ/を/破る。(semantic error)

Representation of syntax (grammar)

- 営業の安藤さんお願いします。
- 営業の佐藤さんお願いします。
- 営業の鈴木さんお願いします。

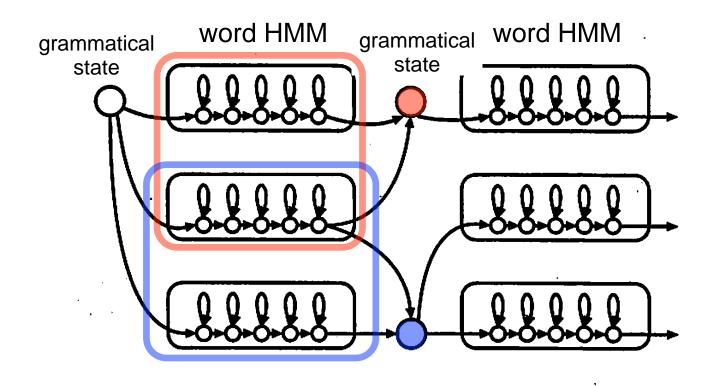


Network grammar with a finite set of states



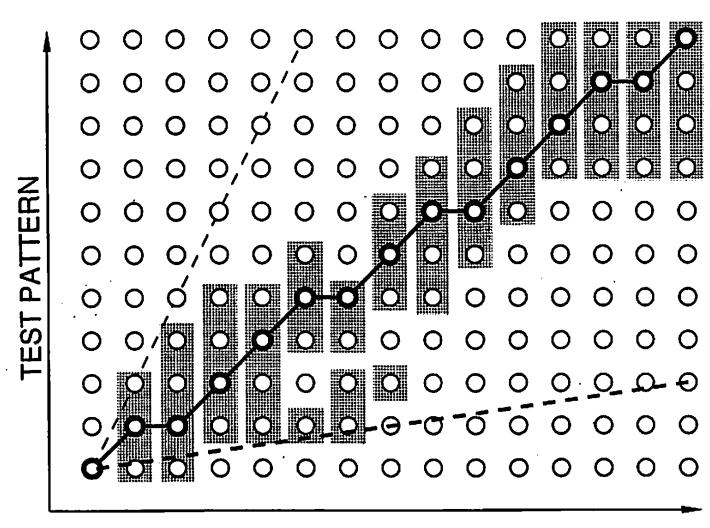
A sentence is accepted if it starts at one of the initial states and ends at one of the final states.

Speech recognition using a network grammar



When a grammatical state has more than one preceding words, the word of the maximum probability (or words with higher probabilities) is adopted and it will be connected to the following candidate words.

Viterbi search algorithm



REFERENCE PATTERN

A well-known strategy for diversity

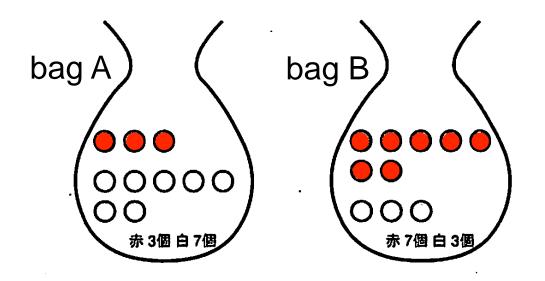
Statistical framework of ASR

- Solution of argmax_{w} P(w|o)
 - P(w): prior knowledge of what kind of words or phonemes are likely to be observed.
 - P(w|o): conditional probability of word observation, given acoustic observation of o.
 - (specific) o --> w1, w2, w3, ...? o --> p1, p2, p3, ...?
 - Data collection is very difficult to estimate P(w|o) directly.
- Use of the Bayesian rule

$$P(w|o) = \frac{P(w,o)}{P(o)} = \frac{P(o|w)P(w)}{\sum_w P(o,w)} = \frac{P(o|w)P(w)}{\sum_w P(o|w)P(w)}$$

- The denominator is independent of w.
- Maximization of P(w|o) in terms of w is equal to that of P(o|w)P(w) (=P(o,w))
- Solution of argmax_{w} P(o|w) P(w)
 - P(w): can be estimated from a large text corpus.
 - P(o|w): conditional probability of acoustic observation, given intended content of w.
 - (specific) w --> o1, o2, o3, ...? p --> o1, o2, o3, ...?
 - This data collection is possible by asking many speakers to say w or p!!
 - P(o|w): acoustic model, P(w): linguistic model
 - Separate two models and a program that can search for the word sequence that maximizes P(o,w)

Probabilistic decision



Observation: You pick a ball three times. The colors are O O.

Probabilities of P(OO | A) and P(OO | B)

袋A:
$$\frac{3}{10} \times \frac{7}{10} \times \frac{3}{10} = 0.063$$
 袋B: $\frac{7}{10} \times \frac{3}{10} \times \frac{7}{10} = 0.147$

Decision: The bag used is supposed to be B.

Statistical framework of speech recognition

$$P(W|A) = \frac{P(A,W)}{P(A)} = \frac{P(A|W)P(W)}{P(A)} = \frac{P(A|W)P(W)}{\sum_{W} P(A|W)P(W)}$$
A = Acoustic, W = Word

- $P(bag| \bullet \bigcirc \bullet) \longrightarrow P(bag=A| \bullet \bigcirc \bullet)$ or $P(bag=B| \bullet \bigcirc \bullet)$
- P(●○●|bag=A): prob. of bag A's generating ●○●.
- P(bag) --> P(bag=A) or P(bag=B) Which bag is easier to be selected?

If we have three bags of type-A and one bag of type-B, then

$$P($$
袋A | ••••) = $0.063 \times 0.75 = 0.04725$
 $P($ 袋B | •••) = $0.147 \times 0.25 = 0.03675$

The bag used is supposed to be A.

N-gram language model

The most widely-used implementation of P(w)

Only the previous N-1 words are used to predict the following word. (N-1)-order Markov process

$$P(x_{1}, \dots, x_{n}) = \underbrace{P(x_{n}|x_{1}, \dots, x_{n-1})}_{\approx P(x_{n}|x_{n-N+1}, \dots, x_{n-1})} P(x_{1}, \dots, x_{n-1})$$

$$\approx P(x_{n}|x_{n-N+1}, \dots, x_{n-1}) P(x_{1}, \dots, x_{n-1})$$

$$\approx \prod_{i=1}^{n} P(x_{i}|x_{n-N+1}, \dots, x_{i-1})$$

$$N-1 = 1 --> bi-gram$$

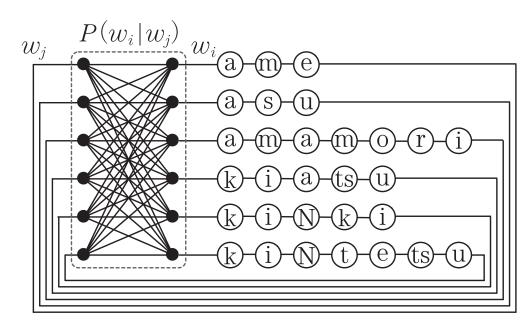
$$N-1 = 2 --> tri-gram$$

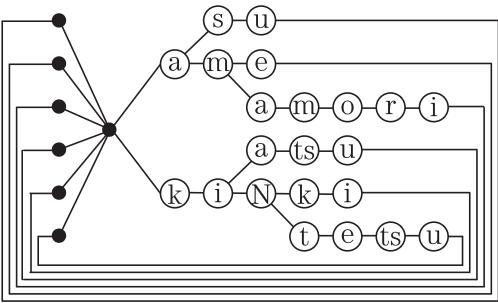
I'm giving a lecture on speech recognition technology to university students.

P(a | I'm, giving), P(lecture | giving, a), P(on | a, lecture), P(speech | lecture, on), P(recognition | on, speech), ...

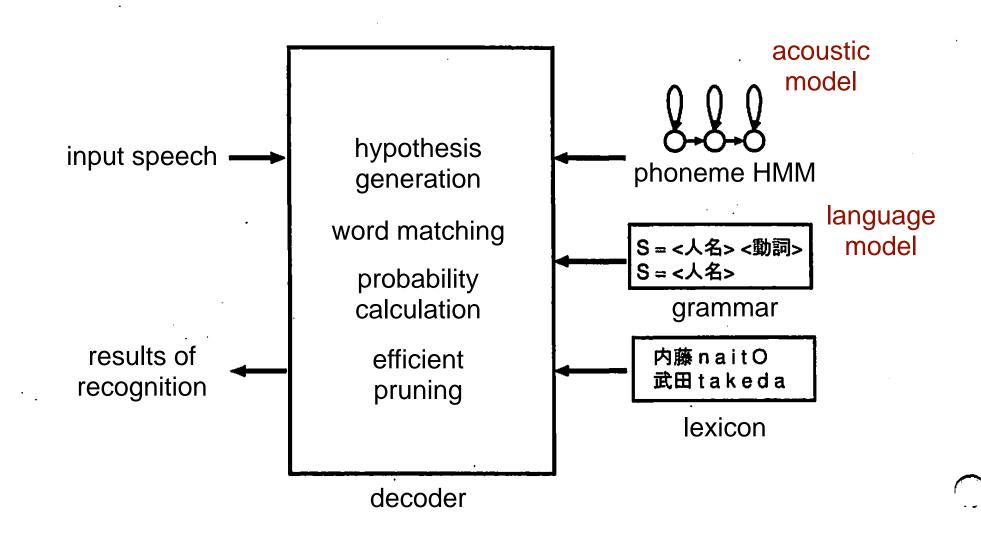
2-gram as network grammar

2-gram as network grammar and as tree-based network grammar





Development of a speech recognition system



Today's menu

- Fundamentals of statistical speech recognition
- Acoustic models for speech recognition
- From word models to subword models
- Speech recognition using grammars
- A small demo of automatic broadcast captioning
- Recommended books

ASR under various conditions

種々の条件下における認識結果例

- □ 連続音韻認識結果(triphone の任意連結)
 - SILQbe: kokudeoNobetonamukita: Nhe: einokokumiNnomewachimetakuSILSILQayag adoc: oj c: c: wats un eru made i ni wa SIL SIL ts ukanari no saige ts ohi chi oo to shi ta
- □ *連続音節認識結果(上記+音節構造の知識導入)*SILげいこくでおんおべとなむきたんへいのこくみんのめわちめたくSILSILっあやがどおじょお わつねるまでいにわ SIL SIL つかなりのさいげつおひちおおとした SIL
- □ 連続単語認識結果(上記+単語の知識導入, 語彙数=20K)

1st pass 米穀 ネオン ベトナム 機関 平 残っ 区民 度目 月 目立っ 句 。 ? カヤ 花道 王女 大和 詰める までなり なさい えっ 消費 治療 落とし 他

2nd pass 米穀 ネオン ベトナム 帰還 平 残っ 区民 度目 月 目立っ く 、 、 カヤ 門 王女 大和 詰める まで 庭り なさい れ 曹 陽 治療 落とし た

ASR under various conditions

種々の条件下における認識結果例

- □ 連続音韻認識結果(triphone の任意連結)
 - SILQbe: kokudeoNobetonamukita: Nhe: einokokumiNnomewachimetakuSILSILQayag adoc: ojc: c: watsunerumadeiniwaSILSILtsukanarinosaigetsohichiootoshita
- □ 連続音節認識結果(上記+音節構造の知識導入)
 SILげいこくでおんおべとなむきたんへいのこくみんのめわちめたくSILSILっあやがどおじょお わつねるまでいにわ SIL SIL つかなりのさいげつおひちおおとした SIL
- □ 連続単語認識結果(上記+単語の知識導入, 語彙数=20K)

1st pass 米穀 ネオン ベトナム 機関 平 残っ 区民 度目 月 目立っ 句 。 ? カヤ 花道 王女 大和 詰める までなり なさい えっ 消費 治療 落とし 他

2nd pass 米穀 ネオン ベトナム 帰還 平 残っ 区民 度目 月 目立っ く 、 、 カヤ 門 王女 大和 詰める まで 庭り なさい れ 曹 陽 治療 落とし た

□ 大語彙連続音声認識結果(上記+単語間の連鎖知識導入)

lst pass 米国のベトナム帰還兵の国民の目が冷たく、彼らは同情を集めるまでには、かなりの歳月を必要落とした。

2nd pass 米国のベトナム帰還兵の国民の目は冷たく、彼らが同情を集めるまでには、かなりの歳月を必要とした。

□ 正解文

米国でもベトナム帰還兵への国民の目は冷たく、彼らが同情を集めるまでには かなりの歳月を必要とした。

Automatic broadcast captioning

Recommended books

