Cognitive Media Processing #6

Nobuaki Minematsu

Menu of the last lecture

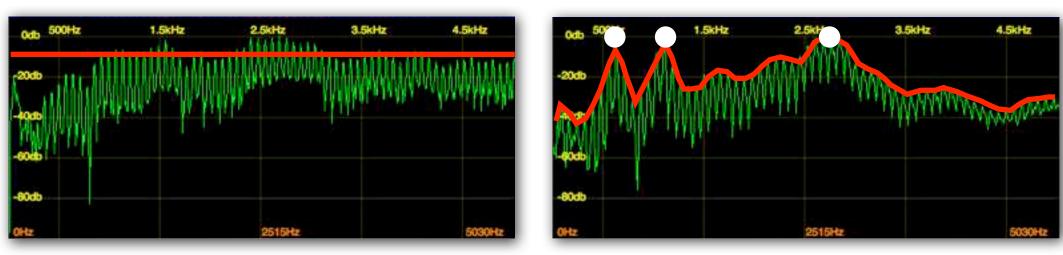
- Speech --> sounds --> vibrations (waves) of air particles
- Fundamentals of phonetics
 - How are vowel sounds produced?
 - Phonetics = articulatory phonetics + acoustic phon. + auditory phon.
- More on articulatory phonetics
 - Observation of speech organs
- More on general phonetics
 - General phonetics = language independent phonetics
 - How to symbolize language sounds found in any language?
- More on acoustic phonetics
 - Vowels as standing waves
 - Resonance frequency = formant frequency
 - Link between acoustic phon. and articulatory phon.
- Summary

Speech = vibrations of air particles

- The four aspects of tones (sounds)
 - Height of tones (pitch of tones)
 - High tones and low tones
 - Loudness of tones
 - Loud tones and soft tones
 - Duration of tones
 - Long tones and short tones
 - Timbre of tones (color of tones, 音色, 声色)
 - ????

- /a/ and /i/ /a/ and /a/
 - difference in phoneme, difference in gender

Speech = vibrations of air particles


- Close observation of air particle vibration patterns.
 - /a/, /i/, and /u/ with the same height of tone.
 - They are periodic signals (waveforms).

Acoustic phonetics

Spectrum of a vowel sound

Resonance = concentration of the energy on specific bands that are determined only by the shape of a tube used for sound generation.

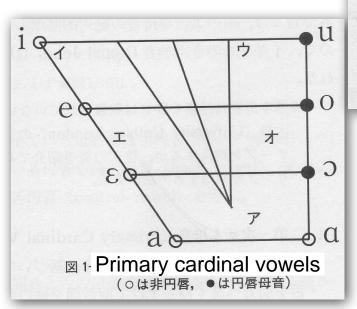
Timbre = energy distribution pattern over the frequency axis

Fundamental frequency (Fo) and timbre

Fo and timbre observed in the spectrum

喉の形を変えると共振周波 数が変わる。つまり、エネ ルギー分布の様子(パワー スペクトル)が変わる。

これを、音響用語では音色 と呼ぶ。楽器の違いは音色 の違い、母音の違いも音色 の違いである。話者の違い もまた、音色の違いである



厳密には「音高=a」であって、ピークの間隔ではない。調波構造が無くても音高は感覚できる。

General phonetics

- 18 fundamental and theoretical vowels -- cardinal vowels
 - Reference vowels used to describe the vowel sounds in a specific language.
 - Theoretically and artificially defined vowels
 - Position of the tongue x lip (un)rounding gives a set of 18 vowels.

: rounding

O: unrounding

nanner of articulation

General phonetics

- Classification of consonants
 - Complete or partial closure in the vocal tract.
 - Where and how closure happens in the vocal tract.
 - Where = place of articulation
 - How = manner of articulation
 - Condition of the vocal folds = voiced or unvoiced

place of articulation

	Bila	bial	Labio	dental	Den	ntal	Alve	eolar	Post-	alveolar	Reti	oflex	Pal	atal	Ve	elar	Uvi	ular	Phary	ngeal	Glo	ttal
Plosive	p	b					t	d			t	d	С	J	k	g	q	G			3	
Nasal		m		m				n				η		n		ŋ		N	Tegj			
Trill		В						r							1118			R				
Tap or Flap								ſ				t										
Fricative	ф	β	f	v	θ	ð	S	Z	ſ	3	ş	Z,	ç	j	х	γ	χ	R	ħ	S	h	f
Lateral fricative				XII			1	ß													TE	
Approximant				υ				I				ŀ		j		щ						
Lateral approximant	100		18 3					1				Ţ		λ		L						

http://phonetics.ucla.edu/course/chapter1/flash.html

Title of each lecture

7/15 11

- Theme-1
 - Multimedia information and humans
 - Multimedia information and interaction between humans and machines
 - Multimedia information used in expressive and emotional processing
 - A wonder of sensation synesthesia -
- Theme-2
 - Speech communication technology articulatory & acoustic phonetics -
 - Speech communication technology speech analysis -
 - Speech communication technology speech recognition -
 - Speech communication technology speech synthesis -
- Theme-3
 - A new framework for "human-like" speech machines #1
 - A new framework for "human-like" speech machines #2
 - A new framework for "human-like" speech machines #3
 - A new framework for "human-like" speech machines #4

Phones and phonemes

Phones

- A phone is the minimal unit of speech of any language.
- Phonetic symbols are language-independent and used by phoneticians to transcribe speech of any language. Defined by by Int. Phonetic Association.
- Should be used like [a b c d e f g].

Dental	Alveolar	Retroflex		
0	t d		t	d
	n			η

Phonemes

- A phoneme is the minimal unit of speech of a specific language, perceived by native speakers of that language.
- Phonemic symbols are language-dependent and used by ordinary people to transcribe speech of that language. Can be defined by a user.
- Should be used like / a b c d e f g /.

/arajurugeNzituo/ → [ɐɾɐjɨɾɨ̞ge̞ĕ̞n̞d͡͡zitsɨɔ̞ʔ]

Phones and phonemes

Sounds of a class can be perceived as sounds of different classes.

とんぼ、とんねる、どんぐり

[m], [n], [ŋ]

● ライト, ライト

right, light

すいか, たべますか?

[sw], [s]

- For Japanese, they are of one class but for foreigners, they may be of different classes.
- Japanese may have less capacity of phone discrimination but they may have better capacity of discriminating sounds by their duration.
 - おばさん、おばあさん、

おかやま(岡山)、おおかやま(大加山)、おおおかやま(大岡山)

- Phonemes and allophones
 - One phoneme is sometimes acoustically realized as different phones.

[m], [n], and [\mathfrak{g}] are allophones of harpha.

- Phones are objective(acoustic) and phonemes are subjective(mental)?
 - #phones >> #phonemes (30 -- 40). Phones are finer units of speech.
 - Definition of phones is still based on speakers' abstraction of speech acoustics.
 - The definition does not discriminate between adults' [a] and kids' [a] although their spectral envelopes are very different between them.

Speech Communication Tech. - Acoustic analysis of speech -

Nobuaki Minematsu

Today's menu

- More on details of acoustic phonetics (continued)
 - Characteristics of human hearing
 - Fundamental frequency and pitch again
 - Fourier analysis of speech signals
 - Simple hearing tests

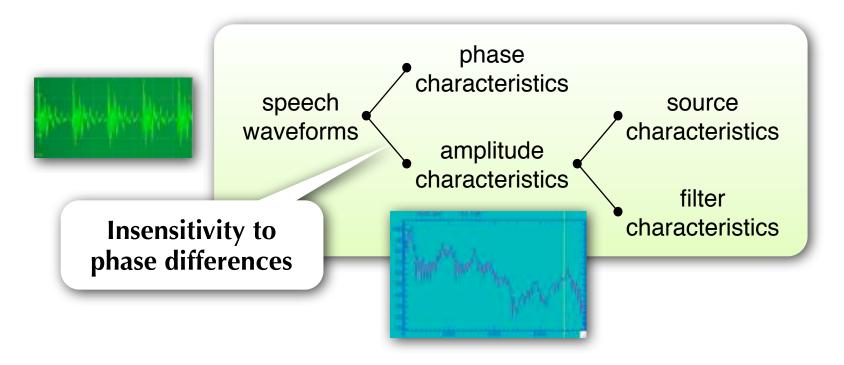
- Source-filter model of speech production $S(\omega) = G(\omega)H(\omega)R(\omega)$
- Cepstrum method to separate source and filter
- Advanced analysis tool of STRAIGHT
- Some morphing examples
- LPC, PARCOR, and the shape of a vocal tube

- Vowels, semivowels, liquids, nasals, voiced fricatives, unvoiced fricatives, glottals,
- voiced plosives, unvoiced plosives, voiced affricatives, and unvoiced affricatives
- Speech recognition as spectrum reading
- Summary

Acoustic phonetics

From waveforms to spectrums

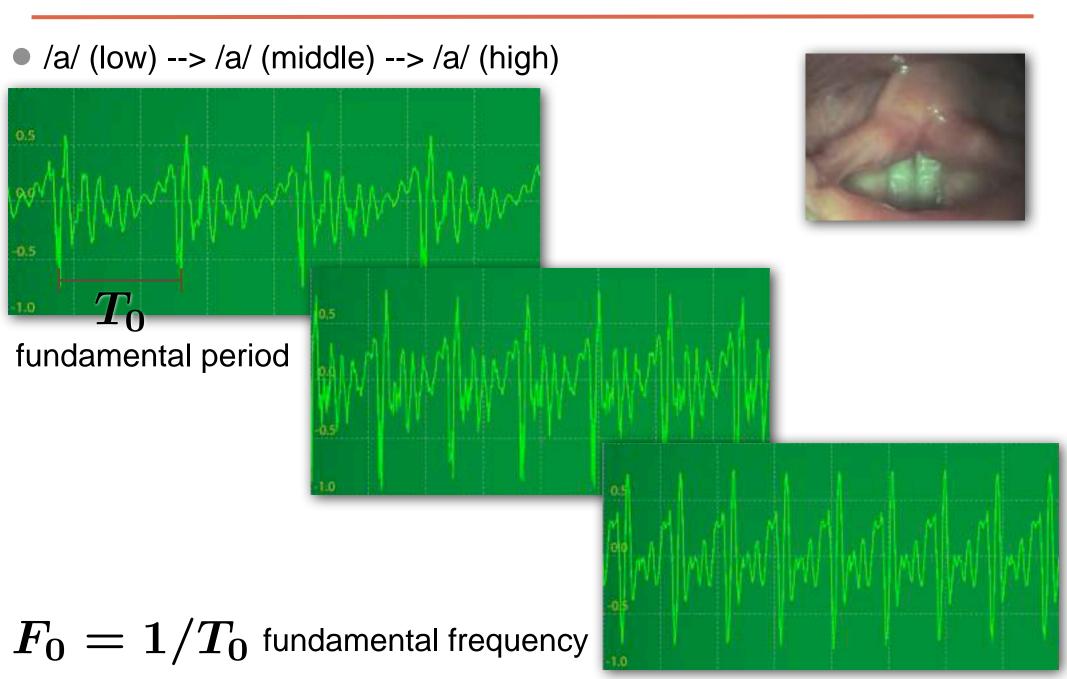
Windowing + FFT + log-amplitude



spectrogram

Waveform to spectrum

- From waveforms to spectrums
 - Windowing + FFT + log-amplitude
- Insensitivity of human ears to phase characteristics of speech
 - Human ears are basically "deaf" to phase differences in speech.
 - It is not impossible for us to discriminate acoustically two sounds with different phase characteristics but we don't discriminate them linguistically.
 - No language treats those two sounds as two different phonemes.



Spectrum to spectrum envelope

- From spectrums to spectrum envelopes
 - log-amplitude spectrum -> smoothing -> spectrum envelope
- Humans' insensitivity to pitch differences when perceiving phonemes.
 - /a/ with high tone and /a/ with low tone are perceived to be of the same class.
 - Separation of pitch (fundamental frequency) can be done by spectrum smoothing.

Speech waveforms and pitch

Speech spectrums and pitch

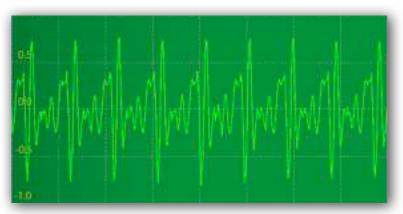
1 octave = doubling Fo

Mathematical mechanism of music (scale)

$$C \rightarrow C\# \rightarrow D \rightarrow D\# \rightarrow E \rightarrow F \rightarrow F\# \rightarrow G \rightarrow G\# \rightarrow A \rightarrow A\# \rightarrow B \rightarrow C$$

 $\times 2.0$

$$\times 1.059 \times 1.059 \ \times 1.059 \times 1.059$$


$$1.059 = 2^{\frac{1}{12}}$$

30 0 10 100 200 300 400 500 600 700 800 900 10

$$y = \log_{10}(x)$$

Harmonic structure

Speech waveforms and their log power spectrum

Guitar sound waveforms and their linear power spectrum

- Fundamental tone + 2nd harmonic + 3rd harmonic +
 - Fourier series of periodic signals -> Results (spectrums) also become periodic.

Harmonic structure

- Pure tone and complex tone
 - Waveforms and their linear/log power spectrum

Fourier series and speech production

- Periodic signals are decomposed into \(\sum_{\text{sinusoidal waveforms}} \)
 - Periodic signals have a set of line spectrums.
- Fourier series of a train of impulses
 - A train of impulses

$$g(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_0)$$

$$g(t) = \sum_{n = -\infty}^{\infty} \alpha_n e^{jn\omega_0 t}$$

$$\alpha_n = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} g(t) e^{-jn\omega_0 t} dt = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \delta(t) e^{-jn\omega_0 t} dt = \frac{1}{T_0}$$

Fourier transform of a train of impulses

$$G(\omega) = \frac{1}{T_0} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \left\{ 1 \times e^{jn\omega_0 t} \right\} e^{-j\omega t} dt = \frac{2\pi}{T_0} \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$$

- Vowel production as convolution of impulse response
 - Vocal tract (tube) functions as a filter : impulse response of h(t)
 - Glottal source waveform : g(t), output waveform : s(t)
 - $\bullet \ s(t) = h(t) * g(t)$

Acoustic phonetics

Spectrum of a vowel sound

Resonance = concentration of the energy on specific bands that are determined only by the shape of a tube used for sound generation.

Timbre = energy distribution pattern over the frequency axis

Spectrum analysis of guitar sounds

How sounds are processed in the ears

Ear = Fourier analyzer

Frequency of activation of each band of the cochlea

Speech = vibrations of air particles

- The four aspects of tones (sounds)
 - Height of tones (pitch of tones)
 - High tones and low tones
 - Loudness of tones
 - Loud tones and soft tones
 - Duration of tones
 - Long tones and short tones
 - Timbre of tones (color of tones, 音色, 声色)
 - ????
 - If two tones have the same height, the same loudness, and the same duration but the two tones are perceived as different tones, then, the two tones differ in their timbre.
 - /a/ and /i/ /a/ and /a/
 - difference in phoneme, difference in gender

Timbre = energy distribution pattern over the frequency axis

Determined only by the shape of a tube used for sound generation

Hearing test 1

• Q : what kind of acoutic change is expected when a vocal tube becomes shorter?

$$f_n = \frac{c}{2l_1}n$$

$$f_n = \frac{c}{2l_2}n$$

$$f = \frac{c}{2\pi} \left[\frac{A_2}{A_1 l_1 l_2} \right]^{1/2}$$

Hearing test 2

 Q: Guess what kind of tube shape change happened by hearing the sounds before and after the tube shape change.

$$A \rightarrow B \rightarrow A$$

Hearing test 2

 Q: Guess what kind of tube shape change happened by hearing the sounds before and after the tube shape change.

Today's menu

- More on details of acoustic phonetics (continued)
 - Characteristics of human hearing
 - Fundamental frequency and pitch again
 - Fourier analysis of speech signals
 - Simple hearing tests

- Source-filter model of speech production $S(\omega) = G(\omega)H(\omega)R(\omega)$
- Cepstrum method to separate source and filter
- Advanced analysis tool of STRAIGHT
- Some morphing examples
- LPC, PARCOR, and the shape of a vocal tube

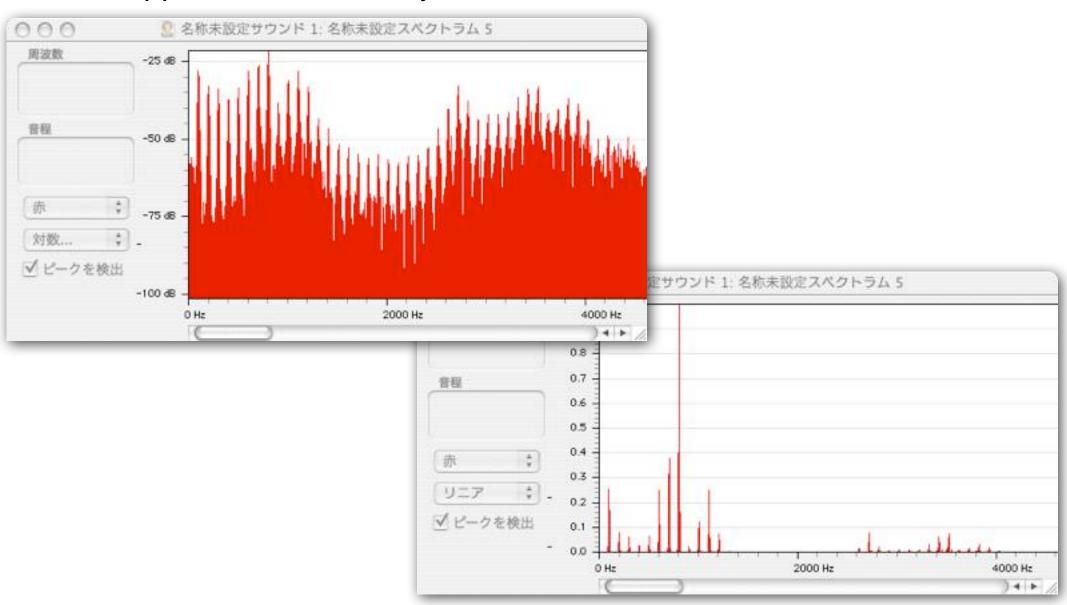
- Vowels, semivowels, liquids, nasals, voiced fricatives, unvoiced fricatives, glottals,
- voiced plosives, unvoiced plosives, voiced affricatives, and unvoiced affricatives
- Speech recognition as spectrum reading
- Summary

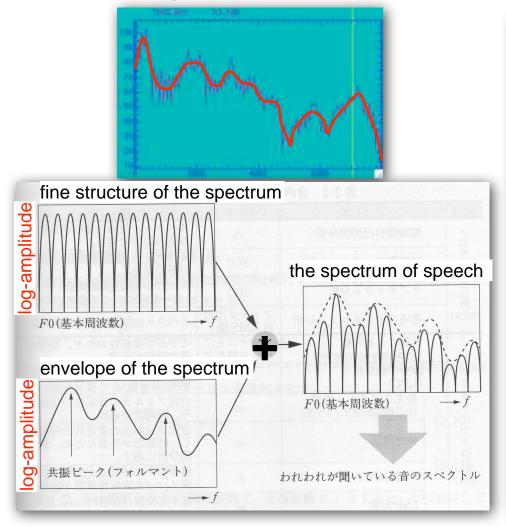
Modeling of speech production

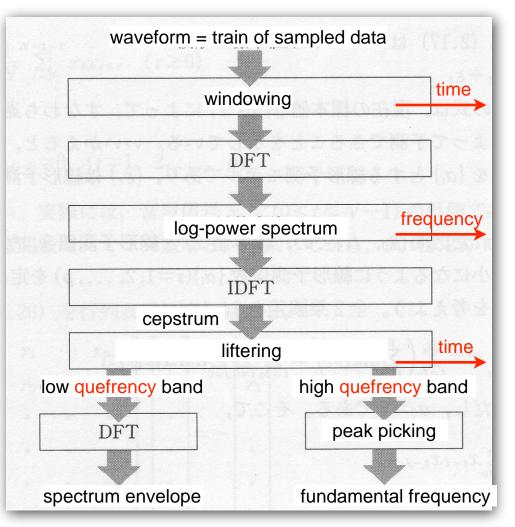
- Mathematical modeling of speech production -- source & filter model --
 - Linear independence between source and filter

Modeling of vowel production

- Mathematical modeling of speech production -- source & filter model --
 - Separation between the spectrums of source and filter




A comment on linear and log spectrums


Their appearances are very different.

Extraction of spectrum envelopes

- Cepstrum method
 - Windowing + FFT + log-amplitude --> a spectrum with pitch harmonics
 - Smoothing (LPF) of the fine spectrum into its smoothed version

Extraction of spectrum env

- Cepstrum method
 - Windowing + FFT + log-amplitude --> a spectrum with pitch harmonics
 - Smoothing (LPF) of the fine spectrum into its smoothed version

Spectrum to spectrum envelope

- From spectrums to spectrum envelopes
 - log-amplitude spectrum -> smoothing -> spectrum envelope
- Humans' insensitivity to pitch differences when perceiving phonemes.
 - /a/ with high tone and /a/ with low tone are perceived to be of the same class.
 - Separation of pitch (fundamental frequency) can be done by spectrum smoothing.

- STRAIGHT [Kawahara'06]
 - High-quality analysis-resynthesis tool
 - Decomposition of speech into
 - Fundamental frequency, spectrographic representations of power, and that of periodicity
 - High-quality speech morphing tool

- Spectrographic representation of power
 - F0 adaptive complementary set of windows and spline based optimal smoothing
- Instantaneous frequency based F0 extraction
 - With correlation-based F0 extraction integrated
- Spectrographic representation of periodicity
 - Harmonic analysis based method

Acoustic phonetics

From waveforms to spectrums

Windowing + FFT + log-amplitude

spectrogram

Short Time Fourier Transform (STFT)-based spectrogram

Short Time Fourier Transform (STFT)-based spectrogram

Complementary pitch-synchronous Gaussian window removes the repetitive structure in the time domain.

Spline-based optimum smoothing reconstructs the underlying smooth time-frequency representation.

Cognitive Media Processing @ 2015

Examples of speech morphing

Examples of speech morphing

Morphing with some anchor points

Pleasure

Sadness

Anger

Examples of speech morphing

R to L morphing bet. r/l-ight generated by Klatt synthesizer [Kubo+'98]

Examples of speech morphing

- Morphing of native utterance and its accented version [Kato+'11]
 - Use of a pair of word utterances spoken by a bilingual speaker
 - Normal Tokyo Japanese
 - Heavily American accented Japanese

igaku (medical science)

phonetic duration (dur)

spectral envelope & aperiodicity (sp_ap)

F0 & dur (F0_dur)

6.

5.

all the parameters (all)

0

0.25

0.5

0.75

morphing rate

Vocal tract shape and spectrum envelope

- Linear Predictive Coding (LPC)
 - Speech signal at time t, st, is predicted as weighted addition of some old signals.

$$s_{t} \leftarrow -\sum_{k=1}^{p} \alpha_{k} s_{t-k}$$

$$s_{t} + \sum_{k=1}^{p} \alpha_{k} s_{t-k} = \sum_{k=0}^{p} \alpha_{k} s_{t-k} = \varepsilon_{t} \quad (\alpha_{0} = 1.0)$$

$$S(z) + \alpha_{1} S(z) z^{-1} + \alpha_{2} S(z) z^{-2} + \dots + \alpha_{p} S(z) z^{-p} = E(z)$$

$$S(z) = \frac{1}{1 + \alpha_{1} z^{-1} + \alpha_{2} z^{-2} + \dots + \alpha_{p} z^{-p}} E(z) = A(z) E(z)$$

 $\{\alpha_k\}$ are estimated for a frame in such a way that error term for that frame, ε_t , should be minimized.

If error term is assumed to be white noise, then, the spectrum envelope shape is determined by A(z).

Spectrum envelopes by CEP and LPC

- Cepstrum-based envelope is just a smoothed spectrum.
- Spectral peaks are emphasized in LPC-based envelope.

LPC to vocal tract area function

- $\{\alpha_k\}$ to the area function of the vocal tube.
 - LPC coefficients are transformed into PARCOR (PARtial auto-CORrelation) coefficients.
 - PARCOR coeff. are transformed to reflection coefficients between two consecutive short tubes.
 - Finally PARCOR coefficients are related to the cross-sectional area of each short tube.

Today's menu

- More on details of acoustic phonetics (continued)
 - Characteristics of human hearing
 - Fundamental frequency and pitch again
 - Fourier analysis of speech signals
 - Simple hearing tests

- Source-filter model of speech production $S(\omega) = G(\omega)H(\omega)R(\omega)$
- Cepstrum method to separate source and filter
- Advanced analysis tool of STRAIGHT
- Some morphing examples
- LPC, PARCOR, and the shape of a vocal tube

- Vowels, semivowels, liquids, nasals, voiced fricatives, unvoiced fricatives, glottals,
- voiced plosives, unvoiced plosives, voiced affricatives, and unvoiced affricatives
- Speech recognition as spectrum reading
- Summary

Cognitive Media Processing @ 2015

Various sounds in languages

Plosive	Blabial		Labiodental	Dental		Alveolar Posts		iar Ref	trofiex	Pa	Palatal		Velar		Uvular		Pharyngoal		Giottal	
	p	b			t	d		t	d	с	j	k	g	q	G			?		
Nasal		m	nj		n				η		ŋ		ŋ		N					
Idil		В				r	Š								R					
Tap or Flap						ſ			τ											
Fricative	ф	β	f v	θ	ðs	Z	S	38	Z,	ç	j	X	¥	χ	R	ħ	2	h	f	
Lateral fricative					4	В														
Approximant			υ			Ţ			ŀ		j		щ							
Lateral approximant						1			l		λ		L							

Cognitive Media Processing @ 2015

Vowels

Characteristics of vowels

- Front vowels of /i/ and /e/: resonance at higher frequency bands
- Middle vowels of /a/: energy distribution over a wide frequency range
- Back vowels of of /u/ and /o/: lower bands are dominant in energy distribution
- Unvoiced vowels

Semivowels and liquids

- Characteristics of semivowels and liquids
 - /w/, /y/, and /r/: characterized by their transitional parts from/to neighboring phones.
 - Large dependency on phonemic context.

Nasals

- Characteristics of nasals
 - /m/, /n/, /ng/, /N/: a pathway to the nasal cavity shows its own acoustic features.
 - Closed vocal cavity and open nasal cavity cause antiresonance.
 - Transitional parts from/to neighboring vowels are useful in identifying nasal sounds.

Unvoiced fricatives and glottals

- Characteristics of unvoiced fricatives and glottals
 - /f/, /s/, /sh/: energy distribution at higher frequency bands
 - A vocal cavity from the (almost) closing point to the lung causes antiresonance.

- /h/: fricative at glottis
 - The shape of the vocal cavity is the same as that of the succeeding vowel.
 - No antiresonance

Voiced fricatives

- Characteristics of voiced fricatives
 - /v/, /z/, /zh/: source sounds are generated at two positions, glottal sources and fricative sources
 - Energy distribution is found at a very low frequency band due to the glottal source.

Voiced plosives and unvoiced plosives

- Characteristics of voiced plosives and unvoiced plosives
 - /b/, /d/, /g/ /p/, /t/, /k/
 - Complete closure in the vocal tract at a time and abrupt release of air flow
 - Buzz-bar: closed vocal tract + vocal fold vibration --> radiation from the skin
 - Transitional parts from/to neighboring vowels are useful in identifying nasal sounds.

Voiced affricates and unvoiced affricates

- Characteristics of voiced affricates and unvoiced affricates
 - Affricate = plosive + fricative
 - /dz/, /dh/, /ts/, /ch/

Spectrum reading

- What are these?
 - Hint: they are numbers.

This is the task that is done by a speech recognizer.

Today's menu

- More on details of acoustic phonetics (continued)
 - Characteristics of human hearing
 - Fundamental frequency and pitch again
 - Fourier analysis of speech signals
 - Simple hearing tests

- Source-filter model of speech production $S(\omega) = G(\omega)H(\omega)R(\omega)$
- Cepstrum method to separate source and filter
- Advanced analysis tool of STRAIGHT
- Some morphing examples
- LPC, PARCOR, and the shape of a vocal tube

- Vowels, semivowels, liquids, nasals, voiced fricatives, unvoiced fricatives, glottals,
- voiced plosives, unvoiced plosives, voiced affricatives, and unvoiced affricatives
- Speech recognition as spectrum reading
- Summary

Recommended books

